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ANTONOVA T.M.!, DMYTRYSHYN M.V.2, VozNA S.M.!

SOME PROPERTIES OF APPROXIMANTS FOR BRANCHED CONTINUED
FRACTIONS OF THE SPECIAL FORM WITH POSITIVE AND ALTERNATING-SIGN
PARTIAL NUMERATORS

The paper deals with research of convergence for one of the generalizations of continued frac-
tions — branched continued fractions of the special form with two branches. Such branched con-
tinued fractions, similarly as the two-dimensional continued fractions and the branched continued
fractions with two independent variables are connected with the problem of the correspondence
between a formal double power series and a sequence of the rational approximants of a function of
two variables.

Unlike continued fractions, approximants of which are constructed unambiguously, there are
many ways to construct approximants of branched continued fractions of the general and the spe-
cial form. The paper examines the ordinary approximants and one of the structures of figured
approximants of the studied branched continued fractions, which is connected with the problem of
correspondence.

We consider some properties of approximants of such fractions, whose partial numerators are
positive and alternating-sign and partial denominators are equal to one. Some necessary and suf-
ficient conditions for figured convergence are established. It is proved that under these conditions
from the convergence of the sequence of figured approximants it follows the convergence of the
sequence of ordinary approximants to the same limit.

Key words and phrases: branched continued fraction of the special form, ordinary approximants,
figured approximants, convergence, figured convergence.
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INTRODUCTION

The paper is devoted to study of the branched continued fractions (BCF) of the form

= i = ag
bo+ Foo + —+ “—, 1
0 0.0 z:]:)l 1+Fz‘,0 z:]:)l 1+F0,1‘ ( )

where F; ; are continued fractions (CF)

(9]

Apti,p+j M+i,1+] - :
Fi=D Y -1 —_i=0,1,..., j=01,..., )
/ o] 1 1+ a24i2+j

1+
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bo, ks j=01,.., k=0,1,..., k+j > 1, are complex numbers or functions of two variables
which are defined in some set D C C2.

If all elements of BCF (1)—(2) are numbers, then BCF (1)—(2) is said to be numerical BCF of
the special form. If some or all elements of BCF (1)—(2) are functions, then BCF (1)—(2) is said
to be functional BCF of the special form.

The above mentioned BCF is one of two-dimensional generalizations of continued frac-
tions, which were offered for the solution of correspondence problem between a formal dou-
ble power series (FDPS) and a sequence of the rational approximants of a function of two
variables [9,12,13]. Functional BCF of the special form is corresponding to FDPS

0o .
e 3
E CijZ122, 3)

i+j>0

if the expansion of its nth approximant into FDPS } % - " )zlzz coincides with the FDPS (3)

ij
to all terms of power 7 inclusively, that is cZ(,],) = Cij, i+j<n.

In the paper [13] it is shown, that BCF (1)-(2) is corresponding to the FDPS (3), if
by = 0,0, 4ip = bilozl, ap,; = bO,iZZI a;jj = bl-,]-zlzz, ,j=12..., the coefficients bk,()/ bO,kt ki,
j,k=1,2,..., are calculating by formulas in term of the coefficients of the FDPS (3), and the
nth approximants f,, are defined as follows

?1

fo=bo, fn—b0+F00 +D ([ ])+D ([;]) n=12..., (4)
k=11+F, =11+ Fy°
where [«] is an integer part of a real number «,
k
0) _ k) _ 1 Tptipti —
Fi" =0, F; —]:_) 1 i,j=01,..., k=12,.... )

Finite continued fractions (5) are called the kth approximants of CF (2).
We can construct the approximants of BCF in different ways. Ordinary nth approximants
of BCF (1)—(2) are defined as follows

n

a0 i ao,i
fO_bOrf_b0+F n=12,....
n 0,0 ]::)1+Fn i) ];) +F0n z)

Approximants f, from (4) are examples of so called figured approximants [5]. Expressions

QY =1, Q1'5+1—1+P("“>+”i(+k§'°, i=1,2,..., k=0,1,..., 6)
Qi+1,0

QW =1, Qi = 1+P("“)+”0(';)“, i=12,..., k=0,1,..., @)
QO,H—l

are said to be the tails of ordinary approximants for BCF (1)—(2). Tails of figured approximants
(4) for BCF (1)—(2) are defined by following formulas

~ ~ k1 i
0l =1, QI = 1+F([2D+“f(+%, i=12..., k=01,..., )
Qi+1,0
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~ . k1 dn : _
Q$:J4Qﬁ”:1+ﬁg2D+f$1,z:LL“q k=0,1,.... 9)
Qo,i41
Taking into account notations (6)—(9), it is possible to write
(n) a1,0 ao,1
fn="bo+Fyy + ,n=12,...,
, (n—1) (n—1)
Q10 Qo1

oo+ EED ¢ M0 d g,
/ Q(nfl) Q(nfl)
1,0 0,1

Approximants f;, f; have sense if in process of reduction of BCF (calculations of their

1
tails by formulas (6)—(9)) uncertainty of the type g don’t appears (it is assumed, that 0=

1 0
= 0 and % +...+ %ﬂ =0 if m > 1). We say that BCF (1)—(2) is figured convergent if,
beginning from some number ny, all its figured approximants have sense and there is finite

limit f = 1131 fu- The value of this limit can be the value of figured convergent BCF.
n—o0

BCF (1)-(2) is said to be convergent, if beginning from some number ny, all its ordinary
approximants have sense and there is finite limit f = lgn fn. The value of this limit also it is
n—o0

possible to assume as the value of convergent BCFE.

BCF (1)—(2) is said to be divergent (figured divergent) if infinite numbers of its approxi-
mants (figured approximants) have not sense or there isn’t only one finite limit of sequence of
its approximants (figured approximants).

A lot of works of analytic theory of multidimensional generalization for continued fractions
are devoted to research of convergence [5,10]. This problem is important till now [3,4,6,7].

For research of properties of sequences of approximants for BCF of the special form the
formulas of difference for two their approximants are used. There are such formulas [5]:

(_1)1' <F50[%]) _ FZFO[%])> ]1_111 ‘1]',0 (_1)m mﬁl aj/O
+

j=1

L (i) ~(m— m41 _Nom
i=1 H Q](() ])Q](O 7) . Q](’é 7) H Q](VS’ 7)
j=1 ! j=1 j=1
m ( ) 0 0 E‘ZOJ ( ) I:Il ao,j
+) = : = ,n>m,and  (10)
i=1 L A=) 3 m=j) " 0= 1T 5m=i)
110474y I 0y T1 QY
j=1 j=1 j=1
i m—i i m+1
([nz]) m (_1)1 (FZ(O ) - PZ(O[ ’ ])> U QJO (_1>m ]-:Il a]()
fo—fn = EW — R4V 4 = =
T el ; I = tm= " =) 1 5(m=)
jor 0 0 =

m — =
+y . = — = > m (11)
i=1 L Am=j) &(m=j) m (n—j) 15 ~(m—=j)
IT1Qp; " Qy, IT Qp; 7 1T Qp;
j=1 j=1 j=1

We note that the formulas (10)—(11) have been established in assumption, that the values of
all tails Q((ﬂc) , Q]((po) , Qépk) , Q,(ﬁ)) , which appear in these formulas, differ from 0.
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MAIN RESULTS

This work is the continuation of the study of properties of approximants for numerical BCF
(1)-(2) with real elements [1,2]. We will consider BCF which elements satisfy such conditions

a;j >0, |ao| = (=1)"lajg #0, |ag;| = (1) lag; #0, i,j=1,2,.... (12)

Under the conditions (12) Fo, F; o, Fo; are the continued fractions with positive elements. It
is well known [8,11] that approximants of even order for such fractions generate a monotone
increasing sequence, approximants of odd order for such fractions generate a monotone de-
creasing sequence and all approximants of even order are less than every approximants of odd
order. Taking these results into account, we have

E < EA Y < BV < EEY, m=0,1,..., n=12,..., (13)
Fom < o) < OV < p0rY, m=0,1,..., n=12..., (14)
FAM < EZM < BV <PV m=0,1,..., n=12,.... (15)

Theorem 1. Let the elements of BCF (1)—2) satisfy the conditions (12) and
1+a0>0, 1+ap >0 i=12,.... (16)
Then the following inequalities are true
Fam < famea < fans2 < fan—z, m=0,1,..., n=12,..., (17)

f4m < f4m+2p+3 < f4m+2/ m=20,1,..., p= 1,2,..., (18)
and the sequences {fa,}, {fap+2}, p=0,1,..., converge.

Proof. Let k be an arbitrary natural number. Using definitions (8)—(9), by induction on p let us
show that the following inequalities are valid

~ a2k+1,0
1< Qé’zz,)o < 1+ayq + T lageaal 7™ 0,1..., (19)
1_ )7 <1l+ay,, p=01,.... (20)

Indeed, for p = 0 and p = 1 we have

~(0 ~(0 ~(1 ~(1
nglw — ng?o =1, 0<1—|ayo|= nglllo <1, ng?o =14ays10 k=12,....

In assumption that inequality (19) is true for p = r, we obtain

0<1—|agpo| <1+FL 213)—

(p+1) _ (22D laxo
< sz 1,0 1+ Fy 210 ) <1+ay;,
2k,0

1

i.e. (20) is valid for p = r + 1. Assuming that inequality (20) holds true for p = r we get

A2k+1,0 (p+1) a2k+1,0 A2k+1,0
1<1+1++<sz —1+F2(k0)+~(p) <1t aggn+
2k+2,1 110
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i.e. inequality (19) is valid for p = r 4 1. Hence, estimations (19)—(20) are true for arbitrary k, p
Analogously we verify validity of inequalities

a9,2k+1
< O < 1y gy + o2

, k=1,2,..., =0,1,..., 21
1 — |ao2x+2] s -
1—Jago] <Oy 1 <1+ao, k=12..., p=01,.... (22)
Further we consider the differences f4m+2p+l — fam, f4n+2p+1,2 — fan_o, m,n,p = 1,2,...,
I =0,1,..., using the formula (10). Let
n—i m—i i
()
~ 1 ~ =
Zia =0 Zn =) L () S (m) S
i=1 I1 Qj,O J Qj,O J
j=1
n—i m—i 1
. ( 1)1 (Fo(z[ 2 ]) _Fo(,z[ 2 ])) Iqlaol
= (2 ~(2 j=
z2% =0, z8 =Y Y , n>m
i=1 H QO,]' J QO,]' J
j=1
Then
7 o p(amept[s])  pem) 50 5(2)
f dm+2p+1 Jam = 0,0 Y- F 00 T+ Z4m+2p+l,4m + Z4m+2p+l,4m
4m+1 4m+1
]I;[ ‘1]',0 I;[l 110,]'
+ +
i Q~ (4m+2p+1—j) H Q (4m—j) 4m+1

(4m+2p+1— m~4m
HQ s ]HQ )
]:

j= j=1

Taking into account conditions (12) and inequalities (13)—(15), (19)—-(22), we have

4m+1 4m+1 4m+1 4m+1
ITa0=11] lajol>0 ] a0 =[] laojl >0, (23)
=1 j=1 j=1 j=1
F(Zm 2i+p+1+[E]) F(Zm 2i+1)
" m \ F4i-30 — Ly H ;0]
Z = — Z
dm+2p+14
mzptlam i=1 H Q (4m+2p+1— ])Q](f)m—])
(2m—2i+p+1+[4])  _@m—2i+1)) %52 (2m—2i+p+[51]) (am-—2i)
m <F4i2,0 "= Filog IT lajol ,, (Fsi10 S Fy H a0
_Z 422 (mt2p+1—j) A (4m—j) +Z + Adm+2p+l—j) (4m*)
i=1 I:I Q P ]Q],O J i=1 I:I Q ]Qj,O ]
(2m—2i4p+[8])  em—2)) & (2m—2i+p+1+[5]) (2m 21+1
m <F4i,0 ’ _F4i,0 H|‘1]0| m Fy; 3,0 ’ —Fyi s H |ﬂ]0|
~ = -y
‘ : 4i-3
- dm+2p+1—j) A (4m— - dm+2p+1—j) (4m—
i=1 ]1:[ Qlam+2p+ J)Q](,Om i) i=1 ]H Q](Om+ p+ J)Q](,Om i)
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(2m72i+p+1+[1]) (2m— 21+1 4i— (2m 21+p+[i]) 2m 2i) 4i—
m | Faim2,0 ’ —Fyiy, ]1:[ |4, w1 Fai=1,0 ’ 41 1,0 1:1 |4,
+) - —+) -
= U2 (am+2p+i—j) & (dm—] = (4m+2p+1—j) ~ (dm—j
i=1 Hl Q](, m+2p+ ])Q](,Om 7 i=1 H Q m+2p+ J)Qj(,om j)
j
(2m—2i+p+[l]) Zm 2i)
Fyio ’ 410 H 1250
* i=1 4 (Am+2p+1—j) ~(4m— ]) =0
D A/t
Similarly Zim) +opriam > 0 Consequently
famiopsi — fam >0, m, 1=0,1, p=12,..., (24)
7 ro o prp1f]) ey 50 5(2)
Jansopr1-2 = fan—2 = Fy =R+ Zuopitsan—s T Zansopii—oan—2
4n—1 4n—1
_H a0 H o,
an—l (ant2p+l-2-— @n—2-j) =1 niopri—2-) 4122 <(an—2-j) (25)
I1Q, 7 ]HQ ! 1 Q7 ]HQO‘ !
=1 o =1
4n—1 4n—1 4n—1 4n—1
H a],() = H ‘61]0’ <0, H 610,]' = — H ’Elo/j‘ <0,
s ) ) 4
" " (F ~3,0 P =Fyag | T aje
z Yy -
An+2p+1—2,4n—2
nzpt " i1 4h Q~ (4n+2p+1-2— ])Q](/éln 2—j)
]:
141 4i—1 _9; L
- <F4(12n1+017 2i-1+[41]) _F4(12n 2i 1) H a; n (Fz;(iz_nzozl+p+[2]> _El 21) H a;
+) -

— (4n+2p+1-2—)) A (4n—2—j = (4n+2p+1—2—j) A (4n—2—j
i=1 H Q n+2p+ ])Q](,On j) i=1 H Q n+2p+ ])Q](,O” j)
(2n+p—2i—1+[l]) @n—2i-1)\ & (2" 2i+p+[5]) p220)

n-1 <F4z‘,0 "= Eyy ],1:11|‘1', Fyi 30 ’ H @),

- = —
; H Q4n+2p+l —2— ])Q(%n—?.—j) ; H Q4n+2p+l —2— ])Q(4n j—2)
jr j.0
(2n721+p+[1]) zn 21 (2n—2i+p— 1+[i]) (7_n 7_1
2 |Faic20 - H |20 o1 |Faic1,0 SV —Ey
= H Q4n+2p+l j— 2)Q(4(L)n7j72) = ﬁ Q~4n+2p+l j— Z)Q(4n - 2)
Jr L j.0
(2n—2z+p—1+[é]) _ plan—2i-1)
n1 |14i0 4i,0 "
— <0, Z o 5 < 0.
i; H Q4n+2p+l i-2) gdn=j-2) dntaptl=24n-2

j0
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Consequently
f4n+2p+172_f4n72 <Or l:0,1,..., nrpzlrzl"- . (26)

From the inequalities (24), (26), where | = 0, it follows “fork” property for figured appro-
ximants of even order. This property is described by system of inequalities (17). Therefore
sequences {fix}, {fas2} are monotone, bounded and convergent. From (24), (26), where
| =3, n = m+ 1, we obtain inequality (18). O

Proposition. BCF (1)—(2), with elements that satisfy conditions (12) and (16), is figured con-
vergent if and only if}qlgn (fani2 — fan) = 0.

Proof. Tt is above mentioned that under conditions (12) and (16) the sequences { fux }, { faks2}
converge to finite limits. Condition lgn ( f4n+2 — f4n) = 0 implies equality of these limits,
n—oo

i.e. convergence of the sequence {fo }. Taking into account inequality (18), we conclude that
klim for = klim fok_1, i-e. BCF (1)~(2) is figured convergent. d
—00 —00

Theorem 2. Divergence of the series

)n k+1
ﬂk k+] ’

);Hakk yr Z (”kﬂ,k)(il)nikﬂl Z

||:]

i,j =1,2,..., is necessary condition of figured convergence of BCF (1)—(2) whose elements
satisfy conditions (12) and (16).

Proof. Using well known results of analytic theory of Continued fractions [8,11], we conclude

that continued fraction (2) converges if and only if the series Z H (Bktik+j) (==t diverges.
n=1k=1

It was shown above that every summand which appears in expressions for f4m Y2p4l — f4m,
m,1=0,1,...,p=1,2,...,1s positive under conditions (12), (16). If series Z H (ar ) (-t
n=1k=1

converges, then 1131 (fams2 — fam) > l1m (Fézomﬂ) — Fézom)) > 0, i.e. BCF (1)-(2) diverges.
m [ee) 2

Let there exists such i that series 2 H (akJrl-,k)(*l)'H(+1 converges. Then taking into account
n=1k=1
inequalities (19), (20), we obtain

1 [8]) _ (n- [%1)

i0 — o ]0|
f4m+2 - f4m > (4m12) ~(4 )
m+2—j m—j
o aj;
2m+1— [ 2m—[]) |
D 3D
- [1+1] [z] = , dm 2,
2 2
~(4m—2j+3) ~(4m—2j+1) ~(4m—2j+2) x(4m—2j)
H QZ]fl,O Q2]71,0 QZ],O Q2]',0
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i 2m+1—[51 2m—[ i1
{1 ol s [0 9D
.z = j=
im (famt2 — fam) > — ; 5 > 0.
e (7] 1] A2j+1,0
(1+ azj1)? L+agjy+————
j=1 j=1 1 — [agj420|

e} n n— .
From assumption about convergence of the series ) [T (a i) D “! for some value i and
n=1k=1
from inequalities (21), (22) it follows that

i 2m+1— i+1 o — i+1
]I:[ |‘10]|n11_r>%0 FO(Z [2])_1:0(,1‘ [2])‘
hm(ﬁl +2—f4 )Z _ , o
e " 7] (5] a0,2j+1 2
=1 j=1 1 —Jag2j2|

0

Remark. “Fork property” for ordinary approximants of even order is not valid. Really, let

bo=1a;k =1, an 10 = a1 =1, amp = apox = —3,i,k=1,2,... . Thenfo =1, fo = 22,
139

fa=21 > fo.

Theorem 3. If sequence {f;} of figured approximants of BCF (1)~(2) whose elements satisfy

conditions (12) and (16) converges, then sequece {f} of ordinary approximants converges to
the same limit.

Proof. Using the formulas (6)—(7), conditions (12) and (16) the following inequalities can be
proved in much the same way as inequalities (19)-(20)

a
1§Q§£)0§1+a2k+1,1+ﬂ/ k:1/2/---/ p:O/L---/ (27)
' 1 — |agks20]
1—\azk,0!SQéZ)_LOSleﬂzk,L k=12..., p=01,..., (28)
a
1< QW) <l+4appq+—2 k=12, p=01,..., (29)
' 1 — |ag 2542
1—Jagol <QPy 1 <14 mm, k=12..., p=01,.... (30)

Using the formula (11), we consider the following differences f4m+p — f4m, fanst p2— f4n_2,
m,n,p=12,.... We set Z;% =0, ng =0,

zZ0 =y _ = m=12,..., n>m,
i=1 I:I Q](,’?J*])Q](’g*])
() fra,

Zim = ) 1 2 m=12.., n>m
i=1 oy e
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Then
_ 4m+P) (2m) (1) (2)
f4m+l7 f4m - F FO,O + Z4m+p,4m + Z4m+p,4m
4m+1 4m+1
_H a0 [T ao,
_ j=

+ - :
4m+1 (4 (4 4m+1 (4 N Am g
H Q m+p—j) H Q m—j) H QO,]"HP i) .HlQ((),jm i)
j= j=

From (23), (27)—(30) it follows that

(4m+p—4i+3) (Zm 21+1
o (Fmpmaa) _ pan 20 Ij

a 7,0

(1) _
Z4m+p,4m -

i=1 H Q (4m+p—j Q](_’%m—f)

(4m+p—4i+2) (2m 21+1 (4m+p—4i+1) (2m—2i)
(R —Fyi, H|%M w \Fai10 —Fy” H|%d

m
N Z 4i—2 Z 4i—1
i=1 i=1

(4m—p—a4i)  o(2m—2i)\ &
m <F4i,0 — Fyig ) H1 a0

+ - I
- dm+p—j) A (4m—j
i=1 H Q](',Om+p ])Q]( m—j)
=1
4m+p 4i+3) (2m— 21+1 4m+p 4i+2) (2m 21+1
m ’F —Hi, ]0| m ’F —Fi ]0|
; H3 (dmep—) 5 (4m— ]> ; HE2 A (dmep—) 5 (4m— ]>
H Qj,O Q],O H Qj,O Q],O
j=1 j=1
(dm+p—4i+2)  L(2m—2i) 4 dm+p—4i)  p(2m-2i)| &
)F4i71,0 ~Hitp ‘aJ, ‘P4 —Fio I1 |ajo
+) : + Z — > 0.
4i—1 . . 4i .
= ~ (4m+p—j) & (4m— i (4 4m—
i=1 Hl Q](,Omw ])Q](,om 7) i=1 H Q m+p— J)Q](_Iom j)
]: :
Similarly Zim) +pam > 0. Consequently
famsp— fam >0, ml1=01,..., p=12.... (31)
Further,
4n+p 2)  L2n-1) | (1) )
fansp-2 = fan—2 = —Foo "t Zgnipoan—2t Layp2an—2
4n—1 4n—1
H a0 _H ao,j
+4n 1 (4n—2—7) +4n 1 4n 2 (4n—2— ]

HQ4n+p2] HQ HQ4n+p2] HQO,]
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From (25), (27)—(30) it follows that

(4n+p—di+1) (2n 2i)
n <F‘ 3,0 ) H |20

(4n+p—4i) (211 2i)
<F4z'—2,0 Fy~ ) H a0

4i—
Zzgl) 24n-27 " -
n+p—24n— 4i—3 -2 ,
i—1 (4n+p—2—j) & (4n—2—j) i1 (4n-+2p+1-2—j) (4n727])
JIge ol H Qls Q'
(4n+p—4i—1) (2n 21 1) (dn+p—4i-2) (2n-2i-1)\ &
-1 <F4i71,0 — Ly ) H ol 4 <F4i,0 — Fyio ) [11 a0
+y - g 4 <.
i (4 2—j) A (4n—2—j i 4 2—j) & (4n—2—j
i=1 H Q n+p— ])Q](,On 7 i=1 1 Q](,O’H‘P ])Q](',On 7)
Similarly Zin)ﬂ? 2 4n—2 < 0. Consequently
fanip—2— fan—2 <0, n,p=12,.... (32)
Taking into account the inequalities (17), (31), (32) we obtain f4m < famipi2 < f4m+2,
m = 0,1,...,p = 1,2,... . In the case of convergence of sequence {f} we conclude that
nlgxc}o fu= hm fk O
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Anronosa T.M., AMutpymia M.B., Bosaa C.M. Aesaki sracmusocni HAOnudceHb 2iIICMUX JaHi0-
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CrarTs npucBsTYeHa AOCAIAXKEHHIO 361)KHOCTi OAHOTO i3 y3araAbHEHb AQHITFOTOBUX APOHiB — riA-
ASICTHIX A@HITFOTOBMX APOGiB CIelliaAbHOTO BUTASIAY 3 ABOMa TiAKaMu posrasykeHb. Taxi Apobu, Tak
caMo 5K i ABOBMMIipHi HeltlepepBHi ApO6Y Ta TIAASICTi AQHITIOTOBi APO6M 3 ABOMa HepiBHO3HAUHVMM
3MIiHHMMM, TIOB’sI3aHi 3 TPO6AEMOIO BiATIOBIAHOCTI MiX (POPMAABHMM TIOABIVHMM CTETIeHEBUM Psi-
AOM i TOCAIAOBHICTIO parTlioHaABHIX HaOAVKeHDb (PYHKIIIT ABOX 3MiHHIIX.

Ha BiaMiHY Bia HemmepepBHUX Ap0O6iB, HAGAVDKEHHS SIKMX Oy AYIOTBCSI OAHO3HAUHO, iCHy€e 6ararto
Crtoco6iB 06y A0BM HaGAVDKEHD IAASICTMX AQHIFOTOBMX APOOiB 3araAbHOTO Ta CHEIiaABHOTO BUTASI-
Ay. Y poboTi po3rAsSHYTO 3BMUaliHi HAaOAVDKEHHS Ta OAHY 3 KOHCTPYKIIiN pirypHMX HabAVKeHb
AOCAIAXKYBaHMX TIAASICTMX AQHIIIOTOBMX APODIB, sika ITOB’sI3aHa i3 3aaadelo BiATIOBiAHOCTI.

PO3rAstHyTO AesIKi BAACTMBOCTI HAOAVDKEHD TaKMX IAASICTMX AQHIIIOTOBMX APOGIB CIIeIliaAbHOTO
BUTASIAY, YaCTVHHI UMCEeABHMKI SIKMX AOAATHI i 3HAaKOIOUepeXXHi, a YaCTVHHI 3HaMEeHHVKI AOPiBHIO-
10T OAVHMIIL. BcTaHOBAEHO AesiKi HeoOXiaHi i AocTaTHI yMoBM (pirypHOI 361KHOCTI. AOBEAEHO, IO
3a cPOPMYABOBAHMX YMOB i3 361KHOCTI TIOCAIAOBHOCTI (pirypHMX HaOAVKeHb BUIIAMBAE 30iKHICTh
IIOCAIAOBHOCTI 3BMUAlHMX HaOAVKEHb AO TOI caMOi IpaHNIIi.

Kntouosi cnosa i ppasii: TIAASICTUIE AQHITFOTOBIUI APi0 CITEITiaABHOTO BUTASIAY, 3BUYAlHI HabAVDKe-
HHSI, irypHi HabAVDKeHHSI, 361KHICTb, pirypHa 361KHiCTb.
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THE NONLOCAL PROBLEM FOR THE 2n DIFFERENTIAL EQUATIONS WITH
UNBOUNDED OPERATOR COEFFICIENTS AND THE INVOLUTION

We study a problem with periodic boundary conditions for a 2n-order differential equation
whose coefficients are non-self-adjoint operators. It is established that the operator of the prob-
lem has two invariant subspaces generated by the involution operator and two subsystems of the
system of eigenfunctions which are Riesz bases in each of the subspaces. For a differential-operator
equation of even order, we study a problem with non-self-adjoint boundary conditions which are
perturbations of periodic conditions. We study cases when the perturbed conditions are Birkhoff
regular but not strongly Birkhoff regular or nonregular. We found the eigenvalues and elements
of the system V of root functions of the operator which is complete and contains an infinite num-
ber of associated functions. Some sufficient conditions for which this system V is a Riesz basis are
obtained. Some conditions for the existence and uniqueness of the solution of the problem with
homogeneous boundary conditions are obtained.

Key words and phrases: operator of involution, differential-operator equation, eigenfunctions,
Riesz basis.
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1 INTRODUCTION

The theory of differential equations with an unbounded operator coefficient was initiated
by Hill and Yosida where the first theorems on the existence of the Cauchy problem solution
for a linear homogeneous differential equation with respect to a function with values in a
Banach space were obtained. Among works on this subject should be noted works of Kato T.,
Krein S.G., Mizohata S., Phillips R.S.

The boundary value problems for linear differential-operator equations are used in the
simulation of boundary value problems for differential equations with partial derivatives, in
particular, in the study of nonlocal problems. Significant results concerning the theory of
boundary value problems for differential-operator equations were obtained in the papers of
Vishik M.I,, Boehner M., Gorbachuk V.I. and Gorbachuk M.L., Dezin O.O., Dubinsky Yu.V.,
Kochubei A.N., Lions J.-L., Mamedov K.S., Romanko V.K., Shakhmurov Veli B., Triebel Kh.,
Yakubov S., Yurchuk N.Yu.

During recent years the number of publications with the use of an involution operator in
various sections of the theory of ordinary differential equations (see [2,8-10, 12, 13, 15, 16]),
partial differential equations (see [1,7,11, 14,17,18]) and differential equations with operator
coefficients (see [3-6]) increased significantly.

In our article we will use the following notations. Let H be a separable Hilbert space and
A : D(A) C H — H be the closed unbounded linear operator with the discrete spectrum

YAK 517.927.5, 517.984.5
2010 Mathematics Subject Classification: 34G10,34K10,34K30,34L10.

@ Baranetskij Ya.O., Demkiv LI, Ivasiuk I.Ya., Kopach M.I., 2018
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0c(A) ={z € R, zx = a(k)?, a,7v >0, k=1,2,...}. Wedenoteby V(A) = {vy € H: k =
1,2,...} the system of the eigenfunctions of A which forms a Riesz basis in H, by W(A) =
{wny € H: m =1,2,...} the biorthogonal system of the functions in the sense of equalities
(v, wm; H) = 0,k # m, (vp,w;H) =1, kK, m = 1,2,...;, HA®) = {h € H: Ah € H},
s > 0. Let H = Lp((0,1),H) and Dy : Hi — Hj is a strong derivative in the space Hj;
) ueeBx) =) _p g, H1H — 0, Ax — 0. Denote by Hy = {u € Hy : D¥u € Hy, A?u € Hy};

X
by [H] the algebra of the bounded linear operators B : H — H. Denote by Hy = L(0,1);
let I be the operator of the involution in the space Hp, Iy(x) = y(1 — x), and let E be the
identity transformation in Hy, p; = 3(E + (—1)/I) are the orthoprojectors in the space Hy,
Ho; = {y € Ho: y = pjy}, j = 0,1. Let us denote by W?" (0,1) = {y € Hp : y(m e Clo,1],
m =0,2n — 1, y®) € Hy}, by W* the space of the continuous linear functionals on the space
W2"(0,1) and by Wi={leW*:ly=0y € Hy; NW21(0,1)}; j =0,1.
We consider the following boundary problem

Lw = (—1)" D¥'w(x) + A?"w(x)

+ i as (DZ w(x) + D¥lw(l —x)) = f(x), x€(0,1), 1)
s=1
tw= DY 'w(0) — DY 'w(1) + lw = ¢, )
lyrjw = DY ?w(0) — DY “w(1) = gy, 3)
where

m;
tiw = ZO(bj,r,OD;w(o) + bj,1Diw(1)), j=12,...,n (4)

=

The function w is called the solution of the problem (1)—(4) if
|Lw—fH] =0, |ljw—g;H(A%)] =0,

Buyj=2n—2j+ g, Bj = 2n —max(mj, 2j — 1) — %,
aj,bj,r,s €R, r=01,..., m<2n-1, s=0,1, j=12,...,n

The paper is arranged as follows. In Section 2 we investigate the properties of the operator of
problem with periodic conditions for the equation (—1)"y(®") = Ay. In Section 3 we study the
spectral properties of the operator of a problem with boundary conditions that are periodic
perturbations. In Sections 4 we construct a commutative group of operators that map the root
functions of the operators of perturbed boundary-value problems. In Section 5 using these
operators, systems of root functions of boundary-value problem operators are constructed and
conditions for the completeness and basis property of these systems are established. In Sec-
tion 6 some analogous results are obtained for the operators of boundary problems generated
by differential equations with an involution.

2 A SPECTRAL PROBLEM WITH PERIODIC BOUNDARY CONDITIONS FOR A
DIFFERENTIAL-OPERATOR EQUATION

Consider the partial case of the problem (1)—(4) with aj =0, b]-,r,S =0,r=01...,m,
s=0,1,j=1,2,...,n,namely

(—=1)" D?{"u(x) + Aznu(x) = f(x), x€(0,1), (5)
loju = DY 'u(0) — DY u(1) =0, 6)

lonsju = DY 2u(0) — DY 2u(1) =0, j=12,...,n )
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Let Ly be the operator of the problem (5)—(7),
Lou = (—1)" D¥"u+ A*u, u€ D(Ly), D(Lo) ={u € Hy:lpju=0,j=1,2,...,2n}.
Consider the spectral problem
(—=1)" D?u(x) + A?™u(x) = Au(x), A€C, (8)
loju= u?0) - u@V1)=0 j=12...2n 9)

We find the solution of the spectral problem (8), (9) as the product u(x) = y(x)vg, vx € V(A),
k=1,2,....
To determine the unknown function y € W?"(0, 1) we obtain the spectral problem

(= 1)"y®(x) + Z'y(x) = \y(x), AeC, (10)
loy=y¥D0) - yF V1) =0, j=12...n (11)
lonry = yFDy(0) —y@ 1) =0, j=12,...,n (12)

Let Ly be the operator of the problem (10)—(12),
Logy = (—1)"y® + 2"y, y € D(Log), D(Lox) = {y € W?(0,1) : Iy = 0,j = T,2n}.

The roots p; of the characteristic equation (—1)" o2 = A — z%” of the differential equation
(=" y®(x) + 2y (x) = Ay(x), (13)
are defined by the relations
—wip, wi = iwi = iexp (LY =
pj = wjp, w1 =1i,wj =1exp (z o ), j=23,...,n

The fundamental system of the solutions of the differential equation (13) is defined by the
formulas

—_

Yi(x,p0) = E(exp wijpx + expwjp(1 —x)) € Hyp, j=12,...,n, (14)

1 .
Yoy i(x,0) = E(exp wipx — expwip(1 —x)) € Hy1, j=1,2,...,n (15)

Substituting the general solution

2n
y(x,p) = Z CsYs(x,p)
s=1

of the differential equation (13) into the boundary conditions (11), (12) we obtain the equation
for determination the eigenvalues of the operator L«

Ap) = det(,Y})74_; = 0. (16)

By substituting the functions (14), (15) in the boundary conditions (11), (12), we obtain
lo;Ynyj = 0, lonssY; = 0, j, ¥ = 1,2,...,n. Therefore A(p) = Ao(p)A1(p) = 0, where
As(p) = det(lanstﬂ)’:’j:l, s=0,1.

The operator L is self-adjoint (see [15]). Therefore the solutions of the equation (16) are
pg = 2qmti, q = 0,1,2,..., which are numbered in ascending order and lie on the half-line
Imp =0, Rep > 0.

Thus, the operator Lo has eigenvalues A, = (04)*" + 22", q = 0,1,.... We obtain the
following result.
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Lemma 2.1. The self-adjoint operator L has a point spectrum
M%H:{MeRug:Qmﬂwa%q:aLm}
and a system of eigenfunctions
V (Lox) = {vq (x) €L2(0,1) 09 (x) =1, vpg(x) = V2 cos2mtgx,
U1 (X) = V2sin2mgx, g =1,2,... },
which is an orthonormal basis of the space Hy.
Remark 2.1. The systems
Vo (Log) = {vog (x) : q=0,1,...}, Vi (Log) = {v9-1(x): g=1,2,...}
form an orthonormal basis in spaces Hy and Hy 1, respectively.

Therefore, the operator Ly has the following eigenfunctions in the space H;

V(Ly) = {vqlk(x, Lo) € H1: vgx(x, Lo) = vg(x)vx, 4 = 0,00, k = 1,00}.

A system of functions {5} ; C H is called a Riesz basis in a Hilbert space H , if {h5}2 ; is
complete in the space H, and for any orthonormal basis {es}>; C H there exists an isomor-
phismB: H —+ H, Bes =h;, s =1,2,....

The product of a system V(A) and an orthonormal system V(L ) is the Riesz basis (see [9])
in the space H;. Thus, the following theorem is true.

Theorem 1. The operator Ly has a discrete spectrum

c(Ly) = {Aq,k ER: A = p‘;'” + zi”, k= 1,00, q= O,oo},

and the system of the eigenfunctions V(Lg) forms the Riesz basis in the space H;.

Let us consider the functions

yr (x,00) = 3 (14 eorpn) ™" (erer o germn1=0))

y1 (x,0q)

(17)

1
2
%(1—2x)sinpqx, r=223...,n9=12,...,

and determine the square matrix

BO,P (xrpq) = ( %,s)z,s:l
of the order n according to the following: the row with number p is determined by the elements
of the system (17) B (x,05) = ys (x,04) and the other lines by the formulas ,3]0-,5 (x,0q) =

(cus)zjf1 withj #p, j,s=1,2,...,n.
We denote the determinant of the matrix By, (x, 04) by y1,, (%, 04) -
Substituting the determinant into conditions (11), (12), we obtain

losyr,p =0, ¥ # p, lopyr,p = (0g)~th(H)W™, (18)
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where the Vandermonde determinant W" is constructed by the numbers
L(w2)?, .. (wn)? h(i) = (=) Y, i=v=1,r=1,....2n, m=1,2,...,n.

Consider the functions y» , (x,04) = (h(i)W") ™! yip (%,09), P=12,...,1
From the relation (18) we obtain

losyo,p =0, 7 #p, lopyop = (pq)ZP_l ,pr=12,...,n (19)

Similarly, let us consider the system of functions

— 11 _ wp\—1 ( Jwrpgx _ jwrpg(1—x)
yn ’ xlp = (1 e Pq) e Pq e Pq ,
2

Ynt1 (X, 09) =5 (1 —2x)cospgx, r=23,...,n,9=1,2,...,

and a square matrix
— 1
By, (xr Pq) = (5;7,5)2,5:1

of the order n which rows are determine by following: the row with number r is determined by
the elements of the system (20) .3},5 (x,0q) = Yn+s (x,pq) and the other lines by the equalities

5]1',5 (xqu) = (wS)Zj—?_, j#r, r,s=13,...,n

We denote the determinant of the matrix by y1 4, (¥, 0q) -
Substituting it into conditions (11), (12), we get

lojyinsr =0, j #n+71, lonsryrprr = W' (PQ)zriz' (21)

Let us define the functions 21 (x,04) = (W™") ™' y1usr (X,00), 1 =1,2,...,1.
Taking the relation (21) for the functions y5 4+ (x, py) into account, we obtain

Y2 =12, r=12,...,n

lO,j]/Z,n+r =0, j#Fn+r1, lontrYonir = (Pq
Remark 2.2. There exist positive numbers Ky, K such that
Ki < ly2(x,pq); Hol| < Kz <0, j=1,2,....,2n,9=12,.... (22)

Here K, s € N, are positive constants.

3 NONLOCAL BOUNDARY VALUE PROBLEM

For the differential-operator equation (5) and an arbitrary fixed p € {1,2,...,n}and b € R
we consider the boundary value problem

tu= DY ) - DY (1) =0, j#p ji=12...,n (23)
lpu= DY u(0) — DY u(l) + Bu =0, (24)
U= DY u(0) — DY %u(l) =0, j=12,...,n, (25)
with
Cu= b(DY¥ 'u(0)+ DY¥ 'u(1)) =0, beR. (26)
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We will use following notations. Let L; be the operator of the problem (5), (23)-(26) and Liu =
(—=1)"D?"u(x) + A*™u(x), u € D(Ly), D(Ly) ={u € Hy: l;,u =0, r = 1,2n}.

We find the solution of the spectral problem (8), (23)—-(26) as the product u(x) = y(x)vy,
v e V(A), k=1,2,....

To determine the unknown function y € W?%(0, 1) we consider the spectral problem

(=" y®(x) + 2"y(x) = Ay(x), AeC, (27)
tyy= yF0) - yF V1) =0, j#£p j=12...,n (28)
iy = Yy U0) — y@ (1) + By =0, (29)
hury =y@72(0) - y@ 2 (1) =0, j=12...,n (30)
with
By =b(y2(0) + y@ = (1)) (1)

Let L1 x = Ly, be the operator of the problem (27)-(31) and

Ligy = (=1)"y®) (x) + 22"y(x), y € D(Lix), D(L1x) = {y € W?(0,1) : I jy = 0,j = 1,2n}.

Let V (L1 x) be the system of root functions of the operator Ly, let R(Lix) = E + S(Ljx) be
the operator which maps the system V (L) into the system V(L ).

Theorem 2. Foranyb € R, p € {1,2,...,n}, the operator Ly j has the point spectrum o (L)
and the system of root functions V (L1 ;) forms a Riesz basis in H).

Proof. We will show that eigenvalues of the operators L and L,  coincide.

We substitute the fundamental system (14), (15) for the solutions of the differential equation
(27) into the boundary conditions (28)-(31). Using I3y,+j(x,0) = 0, j,p = 1,1, we obtain the
same equations for determination the spectrum

det(l,jyr(x,0))77—1 = det(ly jy; (x,0))1, 1 det(hns jyn+r(x, )1

Let us define elements of the system V (L) .
It is easy to see that vy, (x) € D (Lix), L1xv24 (x) = Aguag (x),4=0,1,2,... . Hence

U2g (xr Ll,k) = U2g (x) ;4= 0,1,.... (32)
We define the root functions of the operator L,  as
U291 (%, Lik) = v2g-1(X) + cppyp (%, 04) - (33)

Substituting (33) into the boundary condition (29) and taking the equality (19) into account,
we obtain ¢, = —/2b,

02g-1 (%, Lig) = vag-1 (x) = V2by2p (x,09), 9=1,2,.... (34)
Thus, the operator L ; has a system of root functions (32)-(34) in the sense of equalities

Lyjv2g-1 (%, Lix) = Agxvag—1 (%, Lig) + Gpgv2q (X, Lig),
-1
gb,q = _4\/517” (Pq) " ’ Ll,kv?.q (xr Ll,k) = )\q,kv?.q (xr Ll,k) ;4= 1,2,....

Given the regularity according to Birkhoff (see [15]) of boundary conditions (28)—(31) we
obtain that the system V(L ) is complete and minimal in the space Hj. O
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Let W"~! be the Vandermonde determinant constructed by elements w%, w%, ...,w%;

let Ry = E + S; be the operator which maps the system V (Lj) into the system V; and ele-
ments of this system are

v2g-11 (¥) = (1= V2 W (R(E)W1)"1b(1 — 2x))0g,1 (x),

(35)
0,1 (%) = vo(x), vog1(x) =voe(x), g=12,....

Lemma 3.1. The system V; forms a Riesz basis in Hy.

Proof. For an arbitrary function ¢ € Hy we have

¢ = @ovp (x) + Zo (@2gv24 (X) + @2g—1024—1 (x)) € Hy,
q:

lo: Holl? = lgoP + X (Jozl*+ lgzaf) < oo,
=1
consider the function

@1 = R1¢ = 90vo1(x) + Y _ (@2g0241 (%) + @og-1029-11(x)),
q=1

|R1@; Hol® < Kallg; Holl?,  Ka =2 (1+ [W"(W'=")~'5]?).
Therefore |Ry; [Hyl||?> < K3 < o, Ry = E+ S; € [Hy], R{' = E—S; € [Hy]. Taking into

account the Bari Theorem (see [9]), we obtain the following statement: the system V; forms the
Riesz basis in Hj. O

Therefore, the operator L has the following system of root functions in the space H;

V(L) = {vq,k(x,Ll) =04(x,Lix) vx € Hy: q=0,00, k= 1,00}.
Remark 3.1. The operator Ly has a system of root functions in the means of equalities

LlUqul,k (x/ Ll) = )\q/kvzqfllk (x, Ll) + ‘:b,qufq,k (x, Ll) ,
Cog = —4V2bn (0)™" ', g k=12,
L1vpg i (%, L1) = Agpvagi (x,L1), q=0,1,..., k=12,....

Theorem 3. For any fixed numbers p € {1,2,...,n}, b € R, the system V(L) is the Riesz
basis of the space Hj.

Proof. Let R(L1x) = E+ S(L1x) : V(Lox) — V(Lix), let pi be a projection in H, pry =
(v, wk(A); H)og, R(Ly) = k;R(Ll,k)Pk-

From the definition of the operator R(L{) = E + S(L,) it follows that R"}(L{) = E — S(L,).
Therefore the system V(L;) is complete and minimal in the space H;. Taking into ac-
count the representations of the elements of the system V(L) and Theorem 2, we obtain
IR(L1); [Fh]| < Ka[[R(La); [Hol || < eo.
Taking into account the Bari Theorem (see [9]), we obtain the following statement: the
system V; forms the Riesz basis in Hj.
U
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4 TRANSFORMATION OPERATORS

Forany k € N, p € {1,2,...,n}, we define the operator B, : Hy — Hpy as the operator
whose eigenvalues coincide with eigenvalues of the operator Ly, and the root functions are
defined by

25 (X, By) = 02s(x), v25-1(X, Bp) = v2g-1(x) + ¢4(Bp)y2,p(x,04), (36)

where ¢;(By) €R, s =0,1,..., g=1,2,....
The operator which maps the system V(L) into the system V' (B, ) of the root functions of
the operator B, is denoted by R(B;,) = E + S(Bp), where S(B,,) : Hoo — Ho1, S(By) : Hop — 0.
We denote by Go,(Lox) = {R(Bp)} such that the root functions of the operator B, are
defined by the equalities (36), and Go ¢ (Lox) = Go,p(Lox) N [Ho-

Remark 4.1. Using that S(B,) : Hop — Hp1, S(Bp) : Hoy — 0 we obtain 2 (Bp) =0,
R7Y(B,) =E— S(By).

Consequently, the operator R(B,) has a dense domain in the space Hy and the system of
root functions is complete and minimal in Hy.

Similarly, using the root functions of an adjoint operator L], , we define the functions
wo (x, Bp) = vo (x) + co (1 —2x),
Waq (%, Bp) = v2q (x) + ¢4 (Bp) y2,on—p—1 (%,04) , wag—1 (%, Bp) =v29—1(x), g=1,2,...,
and the set of operators Gy, (Lo i) = {R (B;';) =E+S <B;;) , R(By) € Gop (Lo,k)} :

Theorem 4. Forany b € R, p € {1,2,...,n}, the operator B, has the point spectrum ¢ (L)
and the system of root functions V (L, i) forms the Riesz basis in Hy if and only if the sequence
Cq (Bp) is bounded, i.e. ‘cq (Bp)} <Ks<oo,g=1,2,....

Proof. The necessity. Let the system V (B,) be the Riesz basis in Hy, i.e. R (B,) € [Hy], then
S (Bp) = E — R, (B) € [Ho). From the definition of the operator B, we have

S (Bp) vag—1(x) = ¢q (Bp) yo,p (x,09), 9=1,2,....

Therefore, taking the estimate (22) into account, we obtain

lcg (By)| < I1S(By); [Hollly2,p(x,p); Holl ™! < K < oo,
Ko = K5 IS(By); [Holl, g=172,....

The sufficiency. The completeness of the system V (B,) in the space Hy follows from Remark 4.1.
Let 9 € Hy, ¢ = ¢o+ ¢1, ¢s € Hys, s = 0,1. Then we have

¢ = @ovo (x) + Y (925029 (X) + @20-1029-1 (x)) € Ho,
g=1

s HolP = 9o+ X, (|92 + lgag1[) < o,
q=1

¢

R (Bp) ¢ = ¢ovo (x, Bp) + ), (92902q (%, Bp) + ¢2g-102-1 (%, Bp)) € Hy,

)
I
=

ngk

R (Bp) ¢ = @ovo (¥, Bp) + Y, (92q02g (¥) + @25-1¢4 (Bp) (v2g-1 (%, Lix) — v2g-1 (%)),

=
Il
U

IR(By) g3 HolP> < Ksllg; Holl®, Kz =3 (1+ K2+ K2IIR(Lys); [Fo] )
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Therefore, ||R(By); [Ho]||* < K7 < oo.
Consider equalities R (B,) = E+ S (B,), R™' (By) = E— S(B,) . We have

R™'(By) = 2E— R (B,).

~1(By) ; [Ho| H < Kg < oo, Kg = 8+ 2Kjy. Taking into account the Bari
Theorem (see [9]), we obtain that the system V; forms the Riesz basis in Hj. O

Suppose that Qo () is a set of operators R = E+ S, such thatS: Hyp — Hg1, S: Hp1 — 0,

Qo,c(I) = [Ho) N Qo(I). Using that SZ(BP) =0, R(By) € Go,p(LO,k) C Qo(I) on the set Qo(I),
we can define the operation of multiplication

R1R, = (E+ 51) (E+ S_’)_) =E+ S14+ Sy, R4, Ry € Q()(I).

In particular, (E+ S)(E— S)=E— S>=E, R=E+ S € Qo(I).

Therefore, for each operator R = E + S € Q(I) there exists a unique inverse operator
R'=E-S.

According to the definition of the operator B, and the set Gg (L) we have the inclusions

Gop(Lox) C Qo(I), Geop(Lox) C Qoe (), pe{l2,...,n}.

Thus, the set Qp(I) is an Abelian group which contains the Abelian subgroups Qo (I),
Gop (Lok), Goep(Lox), p € {1,2,...,n}. Therefore, for all operators R; = E+ S; € Qo (I),
j=1,2...,d, d € N, the following equality

d d
[IR =T1(E+S) —E+ZS], deN, (37)
j=1 j=1 j=

holds.

5 NONLOCAL BOUNDARY VALUE PROBLEMS FOR A DIFFERENTIAL-OPERATOR EQUATION

5.1. For the differential-operator equation (5) and arbitrary fixed indices by,s € R, p €
{1,2,...,n},r=0,1,..., k]-, s=0,1,7=1,2,...,n, we consider the boundary problem gener-
ated by nonlocal conditions

i—1

tyw= DY 'w(0) - DY 'w(l) =0, j#p, (38)
by pw = Dipflw(O) - Dipflw(l) + lllgw =0, (39)
luijw= DY *w(0) — DY w(1) =0, j=1,2,...,n, (40)
where
mp
tyw =Y (by,roDyw(0) + b1 Diw(1)). (41)
r=0

Assumption Pz b, 0 = (—1)”117;%1, r=0,1,....,mp, j, p=12,...,n
Assumption P: mp <2p—1, p=1,2,...,n

Remark 5.1. Assumption P; implies thatlll7 eW/,p=12,...,n
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Let Ly = Ly, be the operator of the problem (5), (38)-(41) and
Lou = (—1)" D"u(x) + A*"u(x), u € D(Ly), D(L) ={u € Hy: Lju=0,j=1,2,...,2n}.

The solution of the spectral problem (5), (38)—(41) is defined as the product w(x) = y(x)v,
v e V(A), k=1,2,....
To determine the unknown function y € W?%(0, 1) we consider the spectral problem

(= D"y (x) + Z'y(x) = Ay(x), A€C, (42)
by =y 0 —y@ V1) =0, j#p, (43)
lapy = ¥y 1(0) =y V(1) + Ly =0, (44)
briy = yF20) - y¥21) =0, j=12...,n (45)

Let Ly x = Ly, be the operator of the problem (42)—(45) and

Loy = (=1)" ¥ (x) + z"y(x),
y € D(Lyk), D(Lay) = {y € W"(0,1) : iy =0, j =1,2,...,2n}.

Theorem 5. Suppose that the Assumption P; holds. Then for arbitrary numbers by, s € R, s =
0,1, r=0,1,...,mp, p € {1,2,...,n}, the following statements hold

1) the eigenvalues of the operators L\ and L, coincide;

2) the system V(L ;) is complete and minimal in the space Hy ;

3) if in addition the Assumption P, holds, then the system V (L, ) is the Riesz basis of the
space Hy.

Proof. The proof of part 1 of the theorem can be made in the same way as in Theorem 2.

Let us define the elements of the system V (L, ). A direct substitution gives that the func-
tion vy, (x), g =0,1,..., satisfies the conditions (43)—(45) . Therefore, the root function of the
operator L;; with respect to the eigenvalue A, is defined by

U (X, Log) = vq(x, Lok), 9=0,1,...,
020-1(X, L) = v29-1(x) + cq,py2,p(x, 0g),
Cop = —l;(vzq,l(x))(lp_,pyp_,p(x,pq))’l, g=12,....
Consequently Ly, € Qo(I). If the Assumption P, holds, then from the inequality
\l;/bvzq,l\ < Koy(pq)*~2 we obtain the inequality
|l;z(v7.q—1(x))(12,n+p]/2,p(x1PO,q))_1| < Kjp < 0. (46)

Taking Theorem 4 into account, we obtain the third statement of the theorem. O

Therefore, the operator L; has the following system of root functions in the space H;

V(L) = {vq,k(x, L) = vq(x, Lox)vg: q=0,00, k = 1,00}.
Remark 5.2. The operator L, has a system of root functions in the means of equalities

Lyvpg 1k (%, L2) = Agivag—1x (X, L2) + &g,p02gk (x, L2), (47)
gq,p — _4\/§(pq>2n_1Cq,p, q,k — 1, 2, ceey (48)
LZUZq,k (x, L;)_) = Aqlkvquk (x, Lz) ;4= 0,1,.. .,k =12,.... (49)
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Theorem 6. Suppose that the Assumption Py holds. Then, for arbitrary numbers by, € R,
r=0,1,...,mp, p € {1,2,...,n}, the following statements hold

1) the eigenvalues of the operators Ly and L, coincide;

2) the system V(L) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(L;) forms the Riesz basis of
the space Hj.

Proof. Taking Theorem 5 into account, it is possible to determine the elements of a system
W(L, x) which is biorthogonal to the system V' (L, ) in the space Hy.

Therefore, there exists W(L;) = {wq,k(x, Ly)wy: q=0,1,..., k=1,2,... .} which is the
biorthogonal system of functions to the system V(L;) in the space Hj.

Thus the second statement of the theorem is proved.

Suppose that the Assumption P, holds. Taking the inequalities (46) into account, we obtain
the estimate

IR(L2); [Hi]|] < K11 < oo.

From the Bari Theorem (see [9]) we obtain the statement: the system V; forms the Riesz basis
in Hl- [

5.2. Consider the spectral problem

(—=1)"D¥'w(x) + A%w(x) = Aw(x), (50)
tiw= DY 'w(0) — DY 'w(1) + lw =0, (51)
luyjw = DY *w(0) — DY *w(1) =0, (52)
where
m;
tiw =Y (bjroDsw(0) + bj, 1 Diw(1)), j=12,...,n (53)
r=0

Let L3 be the operator of the problem (50)—(53) and
Lau = (—1)" D¥"u+ A*u, ue D(L3), D(L3)={u€ Hy:lju=0,j=1,2,... ,2n}.

We find the solution of the spectral problem (50)—(53) as the product w(x) = y(x)vg,
€ V(A), k=1,2,....
To determine the unknown function y € W2%(0, 1) we obtain the spectral problem

(_1>ny(2i’l) + Z%”y — )\y, A - C, (54)
ty = y@00) + y@ V(1) + Iy =0, (55)
E?l-i—jy = y(Zj—?-) (O) — y(Zj—Z) (1) = 0/ ] = 1, 2, (X (56)

Let L3 i be the operator of the problem (54)—(56);
Loy (x) = (=1)"y®) (x) + 2"

y € D(Lak); D (Lax) = {y WX (0,1): Ly =0, j = 1,2,...,2n};

let V (L3 ) be the system of root functions of the operator L .
We can prove that

v (x) € D (L3k), Lagvzg (x) = Agpvog (x), 9=0,1,....
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Therefore,
'Uf)_q (x/ L3,k) = U?.q (X) / q = O/ 1/ e (57)
The root functions of the operator L are determined by the equalities

n
v2g-1 (%, Lag) = v2g-1(X) + ) cugphay (X0g), 4=12,.... (58)
p=1
Substituting the expression (58) into the boundary conditions (55), (56), we obtain

mp
_ 2+4r—2
Cl,q,p - _\/E Z (—1)1/ 2p+1 bp,r,() (Pq) +r P’ p= 1;2/ e, 4= 1, 2;. e (59)

Thus, the operator L3 has the system of root functions (57)—(59) in the means of equalities
Lakvag-1 (% Lak) = Aqivzg—1 (%, Laj) + §0v2g (%, Lak)
n
2n—1
§2 =2vV2n (0g) " Z g 9=12,...,
p=1
L ook (X, L3x) = Agxoak (X, L3x), q=0,1,....
Let R (L3 ) be the operator which actsas V (Lyx) — V (L) . From the formulas (37), (58),
we obtain the relation
n n
R(Lsx) = [T R(L2kp) =E+ Y S(Lakyp)- (60)
p=1 p=1

Therefore, we have the inclusion R (L3 x) € Go (Lox) C Qo (I). Thus, we obtain the following
statement.

Lemma 5.1. Suppose that the Assumption Py holds. Then, for the any fixed by,o € R, r =
0,1,...,mp,p=1,2,...,n, the system V(L3 ) is complete and minimal in the space H.

Consider the system V; of functions

002 (X) = 0o (x), vg2(x) =024 (x,), 9=12,...,
vy-12(x) = (1+ ©)(1 - Zx))vzq 1(x),

= W'W" 1) ey, o = prZp 1,0-

Let Ry, = E 4 S, be the operator which acts as V (Lo,k) — V.
Using that Sy : Hy; — 0, S : Hop — Hp, we obtain that Ry, € Qo(I).

Lemma 5.2. Suppose that the Assumptions P, P, hold. Then the system V, forms the Riesz
basis in the space Hy.

The proof is carried out analogously in Lemma 3.1.

Remark 5.3. Suppose that the Assumptions P;, P, hold. Then the following relations hold
U2g-1(X, L3 k) = v2g-12(x) + Zc] qVi(x,pq) + (pq)’lcé(l — 2x))vzq-1(%), (61)

where
’C},q‘ < Ko, 1031 <Kp<oo, g=0,1,....

Therefore, the systems V(L3 ) and V, are squarely close in the space Hy.



26 BARANETSKIJ] YA.O., DEMKIV I.1., IVASIUK I.YA., KOPACH M.I.

Lemma 5.3. Suppose that the Assumptions Py, P, hold. Then, for any fixed b,,0 € R, r =
0,1,...,my, p=1,2,...,n, the system V(L3 ) forms the Riesz basis in the space H.

The statement follows from Lemma 5.1, Lemma 5.2, Remark 5.4 and the Bari Theorem
(see [9]).

Theorem 7. Suppose that the Assumption P; holds. Then, for any bp,,,() eER,r=0,1,...,my,
r,p =1,2,...,n, the following assertions are true

1) the eigenvalues of the operators Ly and L3 coincide;

2) the system V(L3 ) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(L3 ) forms the Riesz basis of
the space H.

Proof. The proof of part 1 of the theorem follows from Theorem 3, the second statement follows
from Lemma 5.1 and the third statement follows from Lemma 5.3. O

Let

V(L3) = {vq,k(x, L3) = vy(x, Ly )vx € Wy :q = 0,00, k = 1,00}

forms the system of the root functions of the operator L3. Let
W(Lsy) = {wq,k(x, L3) €EHy:q= O,—oo}
be the biorthogonal system of functions to the system V(L3 ) in the space Hy. Let
W(L3) = {wak(x, L3) = wy(x, Lyx)wy € Hy: g = 0,00, k = 1,—00},

be the biorthogonal system of functions to the system V(L3) in the space W; and R(L3) be the
operator which acts as V (Lg) — V (L3).

Theorem 8. Suppose that the Assumption P; holds. Then, for all numbers b,,o € R,
r=0,1,...,mp,p=1,2,...,n, the following assertions are true

1) the eigenvalues of the operators Lo and L3 coincide;

2) the system V(L3) is complete and minimal in the space Hy;

3) if in addition the Assumption P, holds, then the system V(L3) forms the Riesz basis of
the space Hj.

Proof. The proof of part 1 and 2 of the theorem follows from Theorem 7. Taking the relations
(60), (61) into account we obtain the equality

n n n
R(Ls) = [[R(L2j) = [T(E+S(Lyy)) = E+ ) S(Lay)- (62)
=1 =1 j=1

Let Assumptions P; and P, hold. Then from the equality (62) and the assertion 3 of Theo-

rem 7 we obtain
R(L3) € [Hy], R(L3)"* = E — S(L3) € [Hy].

Therefore, the system V(L3) forms the Riesz basis of the space Hj. O

Remark 5.4. The operator L3 has the system of root functions in the means of the equalities
Lavag-1k(%, L3) = Agxv2g-1(%, L3) + &9 k020 k(x, L3),
n
2n-1
Cg,k = 2\/572” (Pq) " Cpqr 4= 1,2,...,
p=1

Lavpgi(x, L3) = Agxvag-1x(x,L3), q=0,1,....
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We consider the system of functions

Vs = {vq,k,;;(x) € Hy:vgp3(x) = v41(x)vx, g =0,00, k= 1,00}.

Remark 5.5. The systems V(L3) and V3 are squarely close in the space H

6 THE SPECTRAL BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL-OPERATOR EQUATION
WITH INVOLUTION

Consider the spectral problem

n
(=1)"D¥'u+ A%u+ Y as (DF 'u(x) + DFlu(l - x)) = Au, (63)
s=1
tu= DY 'u(0) — DY u(1) + lu =0, (64)
Cuyju= DY 2u(0) — DY 2u(1) =0, (65)
with
mj
Ciu =Y (bjroD5u(0) + bj,1Diu(1)), j=1,2,...,n (66)

r=0
Let L be the operator of the problem (63)—(66) and

n
Lu=(=1)" D¥u+ A"u+ Y a, (D;’-f—lu(x) + D2 1y(1 - x)) ;
s=1
ueD(L), D(L)={ue€eHy:lju=0,j=12,...,2n}.
We can prove that

LUqul,k(xr L3) = )\q,kUqul,k(xl L3) + g{%qu,k(xl L3)r q= 1! 2/ vy
n

Cox = Ept V2R Y (e (o) (42 g =12,
j=1

Loggk(x, L3) = Agxvzg-14(x,L3), q=0,1,....
Consequently, V(L) = V(L3) and the following theorem is true.

Theorem 9. Suppose that the Assumption Py holds. Then for the any numbers by, a; €
R, r=0,1,...,mp, j, p=1,2,...,n we have 1) the eigenvalues of the operators Ly and L
coincide;

2) the system V(L) of the root functions of the operator L is complete and minimal in the
space Hy .

3) if in addition the Assumption P, holds, then the system V(L) forms the Riesz basis in
the space Hj.

Let

=) 2 foivg(x, L), for = (f,wqx(x,L); Hy).
k=1 :

Remark 6.1. From the definition of the Riesz basis of Hilbert space and the third statement of
Theorem 9 for any f € H; we obtain the relation

Killfi Hall> < Y Y 1foxl® < Kullfs Hal” (67)
k=14q=0
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7 THE BOUNDARY VALUE PROBLEM WITH HOMOGENEOUS CONDITIONS WITH INVOLUTION

We consider the following boundary problem

n
(~1)"D¥'w+ A¥w+ ) a (DE'w(x) + DE (1 -x)) = f, (68)
s=1
tiw = DY 'w(0) — DY 'w(1) + Ilw =0, (69)
loyjw = DY w(0) — DY *w(1) =0, (70)
where
m;
Giw =Y (bj0Dsw(0) + bjr1Diw(1)), j=1,2,...,n. (71)
r=0

Let W(L) be a biorthogonal system of functions from V(L) in the space H;.

Theorem 10. Suppose that the Assumption Py holds. Then for arbitrary numbers by 0, a; € R,
r=0,1,...,mp,jp€ {1,2,...,n}, and function f € Hj there exists a unique solution of the
problem (68)—(71).

Proof. The solution of the problem (68)—(71) can be determined by the relation
w = Z Z W kg x(x, L). (72)
=149=0

Substituting the relations (67), (72) into the equation (68) we obtain

-1 -1 241 _
Wag—1k = A fog—1k Wagk = Ay foghk = AgiCyifog—1hr 4 k=12,....
Therefore,

Wy 14> < Kislfag-14/% (73)
ok < Kig(| fog-1x1* + [f20k?), 4 k=1,2,.... (74)
Taking the assumption f € H; and the inequalities (67) into account we obtain that

lw; Hi|| < Ka7||f; Hall, w € Hi.
Consider the function h; = A%*w

[ee]

h =Y (foxvox(x, L) + Y (" A;;}qu—l,kvzq—l,k(x/L)
k=1 g=1 (75)

+ (Z%M;ﬁfzmk - )\;13 Zin gtli,kuq—l,k>U2q,k(xr L))).
Taking the assumption f € H; and the inequalities (67) into account we obtain that

|h1; | < Kagl|f; Hall, b € Hi.
Consider the function h, = (—1)"D3"w

o =3 3 (05" Agpfag-1402g-1k(%, L)
=1 (76)

k=1
+ (P%"A;;}fzq,k — 207" )H;]%g;,kuq—l,wUZq,k(xr L)).

From the equalities (76) we get ||hy; H1|| < Kyo||f; H1l|, h2 € Hi.
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n
Consider the function i3 = ¥ as(DZ* 'w(x) — D> lw(1 — x))

s=1

Z Z Z —1y1 2] YA qu, ;£§$,kf2q—1,k)02q—1,k(xzL)- (77)

Taking the assumption f € H; and the equalities (77) into account we obtain that

|h3; Hi|| < Koo f; Hal|-

From the definition of the space H,, inequalities (75)—(77) and Cauchy’s inequality we get

1
|w; Hy < K|l f; Hi|| < o0, Koy = 3(max(K3;, Kig, Kig))2.

Thus w € H,. O

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[15]
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Bapanenpxkmit S1.0., Aemkis LI, IBactox 1.51., Komau M.I. Hesokanexa 3adaua 019 OugpeperyianoHo-
oNepamopHoeo pisHIHHI NOpSIOKY 21 3 HeOOMeAHCeHUMU ONepamopHUMU KoegiyicHmamu 3 ineonoyico //
Kapmarcpxi Mmarem. my6a. — 2018. — T.10, Ne1. — C. 14-30.

BuBuaeThest HeAOKaAbHA KpalfoBa 3aAava AASI AMdpepeHITiaAbHO-0TIepaTOPHOTO PiBHSHHS Tap-
HOTO MOPSIAKY, SIKMI MiCTUTh OIlepaTop iHOBOAIOLII. AOCAIAXYEThCS 3apada 3 IePiOAVYHIMI Kpa-
JIOBMMM YMOBaMM AASI AMicpepeHITiaAbHOTO PiBHSHHSI, KOedillieHTH SIKOTO € HecaMOCIP KeHMMM OTle-
paropamu. BcraHOBAEHO, IO OIepaTop 3aAadi Mae ABa iHBapiaHTHI MiAITPOCTOPM, MOPOAXKEH] oIe-
paTopoM iHBOAIOLIT Ta ABi MACKCTEMM CHCTEMM BAACHUX PYHKILIN, siKi € 6asucamu Picca B KoXHO-
MY 3 IAITPOCTOPiB. AAs AMdpepeHITiaAbHO-0NepaTOPHOTO PiBHSHHS MapPHOTO MOPSIAKY BUBYAEThHCSI
3apava 3 HeCAaMOCTIPSDKEHVMY KpalMlOBVMMM YMOBaMH, sIKi € 36ypeHHSIMM IepiOAMIHMX YMOB. Bu-
BYEHO BUIIaAKM, KOAM 30ypeHi YMOBM € PeTyASPHMMM, aie He CUABHO peryAspHiMI 3a bipkrodpom
Ta HeperyAsipEumu 3a bipkrodom. BusHaueHO BAacHi 3HaUeHHs i eAeMEHTM CUCTEMM KOPeHeBIX
dyHKIIii V onepaTopa 3apadi, SIKa € IOBHOIO Ta MiCTUTD HeCKiHUeHHe UMCAO TIPMEAHAHMX (PYHKITIM.
OTpuMaHO AOCTaTHI YMOBM, IIpU sSIKMX cucTeMa V e 6asucom Picca. BusHaueHO yMOBYM iCHYBaHHS Ta
€AVIHOCTi pO3B’sI3KY 3aAadi 3 OAHOPIAHVMMIM KPafOBVMM yMOBaMH, SIKMIL IIO6YAOBAHO Y BUTASIAL PSIAY
3a cucremoro V.

Kntouosi cnosa i ppasu: omeparop iHBOATOII, AMdpepeHITiaAbHO-OIIepaTOpHe PiBHSHHS, BAACHI
dyukuii, 6asuc Picca.
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(L)

Biswas T.

ADVANCEMENT ON THE STUDY OF GROWTH ANALYSIS OF DIFFERENTIAL
POLYNOMIAL AND DIFFERENTIAL MONOMIAL IN THE LIGHT OF SLOWLY
INCREASING FUNCTIONS

Study of the growth analysis of entire or meromorphic functions has generally been done thro-
ugh their Nevanlinna’s characteristic function in comparison with those exponential functions. But
if one is interested to compare the growth rates of any entire or meromorphic function with respect
to another, the concepts of relative growth indicators will come. The field of study in this area may

be more significant through the intensive applications of the theories of slowly increasing functions

L{ar) _
L(arr) =1

where L = L (r) is a positive continuous function increasing slowly. Actually in the present paper,
we establish some results depending on the comparative growth properties of composite entire and
meromorphic functions using the idea of relative ,L*-order, relative ,L*- type, relative ,L*-weak
type and differential monomials, differential polynomials generated by one of the factors which
extend some earlier results, where ,L* is nothing but a weaker assumption of L.

which actually means that L(ar) ~ L(r) as r — oo for every positive constant 4, i.e. lim
r—00

Key words and phrases: entire function, meromorphic function, relative ,L*-order, relative ,L*-
type, relative ,L*-weak type, growth, differential monomial, differential polynomial, slowly increas-
ing function.

Rajbari, Rabindrapalli, R. N. Tagore Road, Krishnagar, Dist-Nadia, 741101, West Bengal, India

E-mail: tanmaybiswas_math@rediffmail.com

INTRODUCTION, DEFINITIONS AND NOTATIONS

Let us consider that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna theory of meromorphic functions which are available in [13, 16,
22, 23]. We also use the standard notations and definitions of the theory of entire functions
which are available in [24] and therefore we do not explain those in details.

For x € [0,00) and k € IN, we define the following functions exp¥l x = exp (exp[k_l] x)

(K]

and log"™ x = log <log[k*” x) , where IN be the set of all positive integers.

Let f be an entire function defined in the open complex plane C. The maximum modulus
function M (r) corresponding to f is defined on |z| = r as My (r) = max|z| = 7 |f (z)|. In this
connection the following definition is relevant.

Definition 1 ([4]). A non-constant entire function f is said have the Property (A) if for any
o > 1 and for all sufficiently large r, [ M (r)}z < M (r7) holds.

YAK 519.6
2010 Mathematics Subject Classification: 30D20, 30D30, 30D35.
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For examples of functions with or without the Property (A) we refer the reader to [4].

When f is meromorphic, one may introduce another function Ty (r) known as Nevanlinna’s
characteristic function of f, playing the same role as Mg (7).

Now we just recall the following properties of meromorphic functions which will be need-
ed in the sequel.

Let ngj, n1j, ..., g (k > 1) be non-negative integers such that for each j the following in-

k
equality holds }° n;; > 1. For a non-constant meromorphic function f, we call M;[f] =
i=0

Aj (f)™ <f(1)>n1j e <f(k)>nkj, where T (r,Aj) = S(r,f) to be a differential monomial gen-

k k
erated by f. The numbers 7y;; = Y n;andl'y; = ) (i + 1)n;; are called the degree and weight
i=0 j=
S

of M; [f] respectively [6, 19]. The expression P [f] = j;lM]- [f] is called a differential polyno-
mial generated by f. The numbers vp = max 7y and I'p = max I'y; are called the degree
1<j<s lsj<s

and weight of P [f] respectively [6, 19]. Also we call the numbers yp = 1I?i_r<1 vmj and k (the
_ <j<s

order of the highest derivative of f) the lower degree and the order of P [f] respectively. If
Yp = vp, P[f] is called a homogeneous differential polynomial. Throughout the paper, we

consider only the non-constant differential polynomials and we denote by P, [f] a differential
polynomial not containing f, i.e. for which ng; = 0 forj =1,2,...,s. We consider only those
P[f], Py [f] singularities of whose individual terms do not cancel each other. We also denote
by M [f] a differential monomial generated by a transcendental meromorphic function f.

However, the Nevanlinna’s Characteristic function of a meromorphic function f is defined
as

T¢(r) = Np (r) +mg(r),

wherever the function N¢ (r,4) (Z\? £ (r,a) ) known as counting function of a-points (distinct
a-points) of meromorphic f is defined as follows:

r

t,a) —ngs (0,
Ny (r,a) :/nf( il t”f( a)dt—l—nf (0,a)logr
0
. _
— ne(t,a) —ns(0,a _
(Nf(r,a) :/ s (4) ; £ )dt—{—nf(O,a)logr) ,
0

in addition we represent by n¢ (r,a) <n} (r,a)) the number of a-points (distinct a-points) of
fin |z| < r and an co-point is a pole of f. In many occasions Ny (r,c0) and Z\_ff (r,00) are

symbolized by N¢ (r) and N r (r) respectively.
On the other hand, the function m (r,c0) alternatively indicated by my (r) known as the
proximity function of f is defined as follows

27
my (r) = 1 log™ )f (rem) ‘ dd, where log" x = max (log x,0) for all x > 0.
27 A
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Also we may employ m <r, j%ﬂ) by mg (r,a).
If f is entire, then the Nevanlinna’s Characteristic function T (r) of f is defined as

Ty (r) = mg (r).

Moreover for any non-constant entire function f, T (r) is strictly increasing and continuous

functions of r. Also its inverse T L. (| T (0)] ,00) — (0, 00) exists, where li_>m Tf_1 (s) = oo.
S§—00

In this connection we 1mmed1ately remmd the following definition which is relevant.

Definition 2. Let a be a complex number, finite or infinite. The Nevanlinna’s deficiency and
the Valiron deficiency of a with respect to a meromorphic function f are defined as

—_N¢(r,a) my(r,a)
A — 1 T S — i S
oa f) =1~ lim Ty () lim, Ty (1)
and N
A(a; f) =1— lim s (7.2) = lim my (r,)

r—00 Tf (7’) r—oo Tf (1’) .
Definition 3. The quantity ©(a; f) of a meromorphic function f is defined as follows

Z\_ff(r,a)
(a f) _1_}”1%00 Tf(i’) '

Definition 4 ([21]). Fora € CU {oo}, we denote by ns|_(r,a), the number of simple zeros of
f—ain|z| <r.Nf_y(r,a) is defined in terms of ny_; (r,a) in the usual way. We put

af)=1-— 1rr17Nf| 1)
alef) =1l =y

the deficiency of a corresponding to the simple a-points of f, i.e. simple zeros of f — a.

Yang [20] proved that there exists at most a denumerable number of complex numbers
a € CU{co} forwhiché(a; f) >0and Y. &(af) <4
a€CU{o0}
Definition 5 ([14]). For a ¢ C U {co}, let ny(r,a; f) denotes the number of zeros of f — a in
|z| < r, where a zero of multiplicity < p is counted according to its multiplicity and a zero of
multiplicity > p is counted exactly p times and N,(r,a; f) is defined in terms of ny(r,a; f) in
the usual way. We define

B lmN (r,a; f)
Sp(a; f) =1— rlﬁooin() .

Definition 6 ([1]). P[f] is said to be admissible if

(i) P[f] is homogeneous, or
(ii) P[f] is non homogeneous and m¢(r) = S¢(r).

. . . . T
However in case of any two meromorphic functions f and g, the ratio T asr = o
Te(r)

is called as the growth of f with respect to g in terms of their Nevanlinna’s Characteristic
functions. Further the concept of the growth measuring tools such as order and lower order
which are conventional in complex analysis and the growth of entire or meromorphic functions
can be studied in terms of their orders and lower orders are normally defined in terms of their
growth with respect to the exp function which are shown in the following definition.
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Definition 7. The order py (the lower order A¢) of a meromorphic function f is defined as

_ = log Ty (r) _ mlong( r) _ T log Ty (r)
of = r%oolog Texpz (r) 1o log(’) r—eolog (1) + O(1)

\o— fim o8Tr(r) . logTy(r) .~ logTy(r)
f=lim—————~ = lim —— " = lim ————"— | .
rﬁoolog TeXpZ ( ) r—»00 log (7—_[) r%oolog (1’) + O(l)

If f is entire, then

— loglog My (r) S logm Mg (r)

Pr= rlggologlog Mexpz (1) - rlgrgo logr

1 — Iim loglog My (7) ~ im log!? M (1)
f= r%oologlog Mexpz (1) 1500 logr '

Somasundaram and Thamizharasi [18] introduced the notions of L-order and L-type for
entire functions, where L = L (r) is a positive continuous function increasing slowly, i.e.
L(ar) ~ L(r) asr — oo for every positive constant 2. The more generalized concept of
L-order and L-type of meromorphic functions are L*-order and L*-type (resp. L*- lower type)
respectively which are as follows.

Definition 8 ([18]). The L*-order pJLc* and the L*-lower order AJLC* of a meromorphic function f
are defined by
. — logTys(r) log Ty ()
p% = rlimlifL(r) and )Lf = hmif[,(r) ,
log [rel ()] r—eolog [rel ()]
where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. loed M log? M
pjé = lim 28 T £ () and Af = lim 8 T £ ()
=0 log [rel()] r—oo log [rel()]

Definition 9 ([18]). The L*-type chL* and L*-lower type EF of a meromorphic function f such
that 0 < pjé* < oo are defined as

. — T T
O'fL = limfi(r)ﬁ and (Tf = lim f ) T
roe [reL(”)}pf r—00 [reL(”)}pf

where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. — logM . loge M
fL—thf(L*) and E%—li Lf().

r—0o0 |:1"eL( ):| pf

r—00 [T’EL( )]Pf

Analogously in order to determine the relative growth of two meromorphic functions hav-
ing same non zero finite L*-lower order one may introduce the definition of L*-weak type of
meromorphic functions having finite positive L*-lower order in the following way.
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Definition 10. The L*-weak type denoted by TfL* of a meromorphic function f having
0< )\F < oo is defined as follows

T
Tf = lim r () =
r—>00 [T@L(”)] )\f

where L = L (r) is a positive continuous function increasing slowly.
Similarly the growth indicator ?F is defined as

. T
7 = fim f(”)L*’

———"—  where 0< )\J%* < 00,
r—>00 [TEL(")}A]C

If f is entire, then

. log M . —logM .
} = li_mLf(z*) and Tf = lim Lf(zz, where 0 < )\J@ < 00.
r—roo [reL(V)} /\f rmreo [reL(V)} /\f

Extending the notion of Somasundaram and Thamizharasi [18], one may introduce concept
of ,L*-order, ,L*-type and ,L*-weak type of a meromorphic function f as follows.

Definition 11. For any positive integer p, the ,L*-order pl%* (f) and the ,L*-lower order )\’%* (f)
of a meromorphic function f are defined by
L —  logTy(r)

oy (f) = }L)Igolog [rexplPI L (r)]

. log Ty (r)
and Aj (f) = lim JE]
r—oolog [rexpl?! L (r)] ’

where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then

. _ loed M . logl? M
ok (f) = T — 28 M) AL () = fim 28 M D)
P r—olog [rexplP! L (r)] P r—oolog [rexpl?! L (r)]

Definition 12. For any positive integer p, the ,L*-type (rlg* (f) and ,L*-lower type E’Lf (f) ofa
meromorphic function f such that0 < p’%* (f) < oo are defined by

T : T
L' (f) = lim 7 (7) =— and 7, (f) = lim £ (1) )
T [rexpltl L ()] V) e [rexplel L ()] V)
where L = L (r) is a positive continuous function increasing slowly.
If f is entire, then
. — log M : log M
mg (f) = lim og M; () I and 5;% (f) = im 08 My (1) I
r—00 [7’ exp[m L (r)}Pp (f) r—00 [1, exp [p] L 1,) Py

J”
Definition 13. For any positive integer p, the ,L*-weak type denoted by T " (f) of a meromor-
phic function f having 0 < )\’Lq* (f) < oo is defined by

: Ty (1)
Tlg (= rlgxgo [ ]f A5 ()
[rexplP L(r)]™
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where L = L (r) is a positive continuous function increasing slowly.

Similarly the growth indicator ?le* (f) is defined by

Ty (r)
oL ()] ¥ 0
If f is entire, then for 0 < Al%* (f) < oo,
log M (r)

L) -

where 0 < Aé*(f) < 0o

. _ r — log M¢ (r)
p (f) = lim g d T () =Tm e
" [rexplP L (r)]"" [rexplPl L (r)]""

Lahiri and Banerjee [17] introduced the following definition of relative order of a meromor-
phic function with respect to an entire function.

T,

Definition 14 ([17]). Let f be meromorphic and g be entire functions. The relative order of f
with respect to ¢ denoted by p (f) is defined as
p(f,g) =inf{u>0:Ts(r) < Ty (r") forall sufficiently larger}
_ log T, ' Tf (r
m 8lg 1f ( ) .

r—00 log r

The definition coincides with the classical one [17] if g (z) = expz.
Similarly one can define the relative lower order of a meromorphic function f with respect
to an entire ¢ denoted by A¢ (f) in the following manner

. log Tg_le (r)
Af,8) = lim " logr
In order to make some progress in the study of relative order, now we introduce relative
pL*-order and relative ,L*- lower order of a meromorphic function f with respect to an entire
function g.

Definition 15. The relative ,L*-order denoted as p;%* (f,8) and relative ,L*- lower order de-
noted as A;%* (f,g) of ameromorphic function f with respect to an entire g are defined as

— log Tngf (r)

L* T
op Uf:8) = Vh—>n°1°log [rexplPl L (r)

4

i log T 1T, (r
and AL (f,) = lim gTy Tr (1)
] r—oolog [rexplPl L (r)]
where p is any positive integers and L = L (r) is a positive continuous function increasing
slowly.

Further to compare the relative growth of two meromorphic functions having same non
zero finite relative ,L*-order with respect to another entire function, one may introduce the
definitions of relative ,L*-type and relative ,L*-lower type in the following manner.

Definition 16. The relative ,L*-type and relative ,L*-lower type denoted respectively by
0’5* (f,g) and E;%* (f,g) of a meromorphic function f with respect to an entire function g such
that 0 < p;%* (f,g) < oo are respectively defined by

Ty Ty (r) Ty Ty (r)

O—L* (f’g) = m * and FL* (ffg) = h_m * 7
P r—00 [1’ exp[m L (r)}Plﬁ (f.8) P r—00 [1, exp[m L (r)}Pé (f.8)

where L = L (r) is a positive continuous function increasing slowly.
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Analogously to determine the relative growth of two meromorphic functions having same
non zero finite relative ,L*-lower order with respect to an entire function one may introduce
the definition of relative ,L*-weak type in the following way.

Definition 17. The relative ,L*-weak type denoted by T’F (f,g) of a meromorphic function f
with respect to an entire function g such that 0 < Aé* (f,g) < oo is defined by

Tg_le (r

‘ )
%7 (f,¢) = lim —,
P r—00 [7’ exp[p] L (7’)]/\% (f.8)

where L = L (r) is a positive continuous function increasing slowly.
Similarly one may define the growth indicator ?’Lf (f,g) of a meromorphic function f with
respect to an entire function g as follows

Tg_le (r)

T, (f,8) = lim , 0<Ay (f,8) <o

T [rexplPI L (r)] M)

In the paper we establish some new results depending on the comparative growth proper-
ties of composite entire or meromorphic functions using relative ,L*-order, relative ,L*- type,
relative ,L*-weak type and differential monomials, differential polynomials generated by one
of the factors which in fact extend and improve some results of [9] and [10].

1 LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([7]). Let f be a meromorphic function either of finite order or of non-zero lower
order such that © (co; f) = Y. 6, (a;f) = Loré(oo;f) = Y 0(a;f) = 1 and h be an entire
a#co aF#oo

function with regular growth and non zero finite type. Also let ® (o0;h) = Y 6, (a;h) =1 or
a#oo
0 (oco;h) = Y 6(a;h) = 1. Then for homogeneous Py [f] and Py [g],
#00

a

-1 1

i T Tt () (mm) g

lm _1— —_— - .
roe T, Te (r) TPy (]

Lemma 2 ([8]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 61(a; f) = 4 and h be a transcendental entire function with regular
aeCU{oo}
growth and non zero finite type. Alsolet Y.  61(a;h) = 4. Then
aeCU{oo}

_ 1
Tpp Tes) (1) _ (rM[f] — (Tmg _'YM[f])®(°°/'f)>ph

lim =
r—ee T, 1T (1) o) — (Taang — Yy © (00 )

4

where

— N«(r) — Ny (r)
n f . 1T h
1 and O(oo;h) =1 rlgrolo T,
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Lemma 3 ([5]). Let f be a meromorphic function either of finite order or of non-zero lower
order such that ® (oo; f) = Y 0y (a;f) = Llord(co;f) = Y 6(a;f) = 1 and h be an entire
aoo aoo

function with regular growth having non zero finite order and © (co;h) = ) 6, (a;h) = 1 or
aoo
d(co;h) = Y. 6 (a;h) = 1. Then for any positive integer p, the relative ,L*-order and relative
a#oo

pL*-lower order of Py [f] with respect to Py[h] are same as those of f with respect to h for
homogeneous P, [f] and Py [h].

Lemma 4 ([5]). Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 61(a; f) = 4 and h be a transcendental entire function with regular
aeCU{o0}
growth and non zero finite order. Alsolet Y. & (a;h) = 4. Then for any positive integer
aeCU{oo}
p, the relative ,L*-order and relative ,L*-lower order of M([f] with respect to M[h] are same as

those of f with respect toh., i.e.
oy (MIf],M[H)) =py; (f,h) and Ay (M[f], M[h]) =2, (f,h).
Lemma 5. Let f be a meromorphic function either of finite order or of non-zero lower order

such that © (co; f) = Y 6y (a;f) =1 ord(co;f) = ¥ &(a; f) =1 and h be an entire function
azoo aoo

of regular growth having non zero finite type and © (co;h) = Y. 6, (a;h) = 1 or 6 (c0;h) =
a#oo

Y. 6(a;h) = 1. Then for any positive integer p, the relative ,L*-type and relative ,L*-lower

a7#oo
1
type of Py | f] with respect to Py [h] are <%> ’I' times that of f with respect to h ifp;%* (f, h)is
0

positive finite, where P [f] and Py [h] are homogeneous.

Proof. By Lemma 3 and Lemma 1 and above we get that

Tpo i Trots] (1)

ok (Py[f], P [h]) = lim

r—o0 [1,. exp[p] L (r)}p%* (PO[f]/PO[h])
-1 _ 1
— lim TPo[h]TPO[f] () - Tim T, 1Tf (r) _ ('YPo[f]) & oL (f,h)
r—»00 T{le (1’) r—»00 [1’ expm L (T)}Plﬁ (f.h) ')'Po[h] P
1
. g+ _ (el Pr  =L*
Similarly o, (Po [f], Po[h]) = (ﬁ) "Ty (fh). O

In the line of Lemma 5 we may state the following lemma without its proof.

Lemma 6. Let f be a meromorphic function either of finite order or of non-zero lower order
such that© (co; f) = Y 6y (a;f) =1 ord(eo;f) = ¥ &(a; f) =1 and h be an entire function
azoo aoo

of regular growth having non zero finite type and © (co;h) = Y. 6, (a;h) = 1 or 6 (c0;h) =
a#oo

1
Y. 6(a;h) = 1. Then T+ (Py[f], Py [h]) and T (Py [f], Po [h]) are (@)Pk times that of f
1700 FolH]

with respect toh, i.e.
1

L _ [ TRolf] pl".TL* and 7L _ [ "Rlf] Ph_?L*
p (Polf], Po[h]) <7Po[h]> y (fh) and T, (Ro[f], Po[h]) (Wo[h]) p (fh),




ADVANCEMENT ON THE STUDY OF GROWTH ANALYSIS ... 39

when Al%* (f,h) is positive finite and Py [f], Py [h] are homogeneous.

In the line of Lemma 5 and with the help of Lemma 2 and Lemma 4, we may state the
following two lemmas without their proofs.

Lemma 7. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, 41(a;f) = 4 and h be a transcendental entire function of regular
aeCU{o0}
growth having non zero finite type and Y., 61(a;h) = 4. Then for any positive inte-
aeCU{co}

ger p, the relative ,L*-type and relative ,L*-lower type of M|f]| with respect to M[h] are
Doty = Carg =1 ©(0f)
Tt — (T =1 M) ©(00;h)
where

1
>ph times that of f with respect to h if p;%* (f,h) is positive finite,

O(co; f) =1 - Tim T;((:)) and ©O(co;h) =1— @?&%

Lemma 8. Let f be a transcendental meromorphic function of finite order or of non-zero
lower order and Y, 41(a;f) = 4 and h be a transcendental entire function of regular
aeCU{co}
growth having non zero finite type and Y. 61(a;h) = 4. Then T’F (M [f],M[h]) and
aeCU{o0}
1

—L* rMm—(rM[f]—’)/M[f])®(OO,f) E . . .
T, (M[f], M[h]) are (rM[h](rM[h]'YM[h])@(oo/'h) times that of f with respect to h, i.e.

1

e _ (Tm) — Cuag = YO0
p (ML), MIA) = (rM[h] — (g — “YM[h})@(OO}h)) p (0

1

i) = Coagg) = vaap) O f) | 7
Caan) — (Coagng — Vg © (005 1)

T (0,

and T (MIf], M[h]) = (

when AlLﬂ* (f,h) is positive finite and

o N oy e Na(r)
©(co; f) =1 lim 70 and ©(co;h) =1 lim T:(r).

Lemma 9 ([2]). If f is a meromorphic function and g is an entire function then for all suffi-
ciently large values of r we have

Tpog (r) < {1+0(1)} %Tf (Mg (r))..

Lemma 10 ([3]). Let f be meromorphic function and g be entire function and suppose that
0 < u < pg < 0. Then for a sequence of values of r tending to infinity

Trog (r) > Tr (exp (r*)).

Lemma 11 ([15]). Let f be meromorphic function and g be entire function such that(0 < pg < o
and 0 < Ay . Then for a sequence of values of r tending to infinity

Tfog(r) > Ty (exp (")),
where 0 < p < pq.
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Lemma 12 ([11]). Let f be a meromorphic function and g be an entire function such that A4 <
p <ooand0 < Ay < pr < oo. Then for a sequence of values of r tending to infinity

Trog(r) < Ty (exp (r")).

Lemma 13 ([11]). Let f be a meromorphic function of finite order and g be an entire function
such that0 < Ay < u < oo. Then for a sequence of values of r tending to infinity

Trog(r) < Ty (exp ("))

Lemma 14 ([12]). Let f be an entire function which satisfies the Property (A), p > 0,5 > 1 and
« > 2. Then

BTr (r) < T¢ ((xr‘5> .

2 THEOREMS

In this section we present the main results of the paper. It is needless to mention that in the
paper, the admissibility and homogeneity of Py [f] for meromorphic f will be needed as per
the requirements of the theorems.

Theorem 1. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let g be an entire function and 0 < AlLﬂ* (f,h) < oo, (715* (g) < oo, where p is

any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive p < pl%* (g), then
log Th_leog (r) I+

lim <t (g).
—>]og Tl;o%h] Tpy(f] <exp [rexp L (r)] (g))

Proof. Let us consider that « > 2 and § — 17 in Lemma 14. Since T, L(r) is an increasing
function of 7, it follows from Lemma 9, Lemma 14 and the inequality Ty (r) < log M(r) ([13])
for a sequence of values of r tending to infinity that

T, ' Trog (r) < T, ' [{140(1)} Ty (Mg ()],

fie. Ty 1 Tpog (r) < [T, 1T (M ()],

ie. log Ty 'Trog (r) <log T, ' Ty (Mg (r)) + O(1),

r) < <)\IL7* (f,h) + s) [logMg (r) +expP UL (M, (r))] +0(1), (1)
< (A5 () +e)

< | (oL (g) +e reXp[p] L (r) Pﬁ* (8) + exp[pil] L (Mg (7'))
p

ie. log T}fleog(
ie. log T}fleog(

+0(1).

Further in view of Lemma 3, we obtain for all sufficiently large values of r that

_ L*
log T 1 Try 1) (exp [rexp L (r)]f7 )
> <)‘l%* (P [f], Polh]) — e) [[rexp L (r)]pé ©) +explr~1 L <exp [rexp L (r)]plﬁ (g))} ,
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ie.  log Tl Tayy (explresp L ()" 9) = (AL () —¢) - [rexp L(r)}> ).

Now from (1) and above it follows for a sequence of values of r tending to infinity that
log Th_leog (r)

log Tl;o%h] Tpy 1] (exp [rexp L (r)]plﬁ* (g))

O(1)+ (A5 (£ +e) - [(oF (8) +e) rexpL ()7 ) +explr U L (Mg ()]
- (AL (F,1) —e) - [rexpL(n)F

log T;, ' Tfog (1) _ o(1) (2)

log Tl;o%h] Thy(f] (exp [rexp L (r)]pé* (g)) B <)\’Lﬂ* (f,h) — e) [rexpL (r)]plﬁ* 8

(3 G o) | (o )+ 22 000)

4

rexpL(r)]? ©

+

(A5 (£, 1) —e)
As B < pf (g) and explP"UL (Mg (r)) =0 <[r expL (r)]5> as r — 00, we obtain that
=1L (M
lim ( f*(r)) —0. 3)
= rexp L (r)]f? ©)
Since e (> 0) is arbitrary, it follows from (2) and (3) that

_ log Th_leog (r) L+
rhﬁ%ol T-1 T L PILJ* (8) = % (g> '
08 L pyn) ' Rolf] <exp [rexp L (r)] )
Thus the theorem is established. O

Remark 1. In Theorem 1 the condition 0 < Al%* (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < co. If we will replace this condition by 0 < Al%* (f,h) < pp* (f,h) < oo, then
— log T;, ' Tyog (1) ey (fh)- o (3)
r—>00 _
log Tpy 11 Ty 1 <exp [rexp L (r)]7 '8 ) p (fh)
L*

and if in addition we will replace the condition vy (g) < co by E’%* (g) < oo then

. log T, Ty (1) ok () 7 (9)
108 Ty Tay (exp lrexp L @) © A (0

In the line of Theorem 1 and with the help of Lemma 4, one can easily prove the following
theorem and therefore its proof is omitted.

Theorem 2. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let g be an entire function and 0 < A;Lf (f,h) < oo, (7;5* (g) < oo, where p is

any positive integer. If h satisty the Property (A) and exp!P~ L (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive < pl%* (g), then

log T 1T, )
lim 8 " fg(r) - < of

===t L
r=®log TA;I%h] Tf) <exp [rexp L (r)] (g))
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Remark 2. In Theorem 2 the condition 0 < Al%* (f,h) < oo can be replaced by the condition
0< pg* (f,h) < oo. If we will replace this condition by 0 < Aé* (f,h) < pp* (f,h) < oo, then

fim log T, 'Trog (1) oy (Fih) - oy (2)
T — ) VAN R
log TM[h] T <exp [rexp L (r)]F? ) p \Jv

and if in addition we will replace the condition o

y (§) <ooby E’Lf (g) < oo then

-~ log T, 'Tfog (1) _ Py ()T ()
r=log Tl Tare (exp [rexp L (r pp ()} Ay (foh)
& L min t M) \ EXP [ EXP

Now we state the following theorem without proof as it can be carried out in the line of
Theorem 1.

Theorem 3. Let g be an entire function either of finite order or of non-zero lower order such
that © (c0;8) = )} 0p(a;8) = loré(oo;¢) = Y 6(a;¢) = 1 and k be an entire function
aoo azoo

with regular growth having non zero finite order and ® (c0; k) = Y 0, (a;k) = 1 oré (c0;k) =
a#oo
Y. 0(a;k) = 1. Also let f be a meromorphic function and h be an entire function such that
a#oo
A;%* (f,h) < oo, A;%* (g,k) > 0and (75* (g) < oo, where p is any positive integer. If h satisfy the

Property (A) and expP~U L (M, (r)) = o ([r expL (r)]ﬁ) asr — oo and for some positive f <
Py (g), then

lim log Ty Tog (r) _ A )0y (g)
=== _ L* — L* M
®log Ty Toy g (exp [rexp L (r)]F ) Ay (&)

(4)

Remark 3. In Theorem 3, if we will replace the conditions Aﬁ* (f,h) < o and )\y (g, k) >0
by p;%* (f,h) < oo and p;%* (g, k) > 0 respectively, then is need to go the same replacement in
right part of (4). Also if we will replace only the condition )\’%* (f,h) < o by pl%* (f,h) < c0in
Theorem 3, then

fim log T ' Tog (1) o5 (f,h) - oF" ()
B ~1 o5 () AL (g k)
log Ty, B Tpy[g] <exp [rexp L (r)]°? ) 5 (&

Remark 4. In Theorem 3, if we will replace the conditions Ale* (f,h) < o0 and 0';%* (g) < o0 by

p;%* (f,h) < o0 and (7;%* (g) < oo respectively, then is need to go the same replacement in right
part of (4).

In the line of Theorem 3 and with the help of Lemma 4, one can easily prove the following
theorem and therefore its proof is omitted.

Theorem 4. Let g be a transcendental entire function of finite order or of non-zero lower order

such that Y, 61(a;¢) = 4 and k be a transcendental entire function with regular growth
aeCU{co}
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and non zero finite order and Yy,  J1(a;k) = 4. Also let f be a meromorphic function and
aeCU{o0}

h be an entire function such that Al%* (f,h) < oo, Al%* (g,k) > 0 and 0’5 (g) < oo, where p is
any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>

asr — oo and for some positive p < pl%* (g), then

lim log T, " Tyeg (1) A (o h) - o (8)
r—=]og TA_A%k] T (exp [rexp L (r)]Plﬁ (8)) N AL (k)

(5)

Remark 5. In Theorem 4, if we will replace the conditions Aé* (f,h) < o and Aé* (g,k) >0
by p;%* (f,h) < oo and py (g,k) > 0 respectively, then is need to go the same replacement in
right part of (5). Also if we will replace only the condition )\;%* (f,h) < o by p;%* (f,h) < c0in
Theorem 4, then
— log T;, ' Trog () o5 (f 1) o5 (3)
L — FeN = AL (gk)
log Ty Twvg] (exp [rexp L (r)]f" '8 ) A&

Remark 6. In Theorem 4, if we will replace the conditions )\;%* (f,h) < o0 and 0’5* (g) < o by

pl%* (f,h) < o0 and E’%* (g) < oo respectively, then is need to go the same replacement in right
part of (5).

Further we state the following two theorems which are based on pL*-weak type.

Theorem 5. Let the meromorphic function f and entire function h satisty the conditions of
Lemma 3. Let g be an entire function and 0 < A;Lf (f,h) < pp* (f,h) < oo, Tﬁ* () < oo, where p

is any positive integer. If h satisfy the Property (A) and expP =1 L (M, (1)) = o <[r exp L (r)]5>

e . L*
asr — oo and for some positive p < A; (g), then

-~ log Ty, ' Trog (1) _ o -5 Q)
Pt o L* — L* .
"= *10g Ty iy Trylr, <eXP [rexp L (n))" (g)> Ay (foh)

Theorem 6. Let g be an entire function either of finite order or of non-zero lower order such
that © (c0;8) = )} 0p(a;8) = loré(oo;¢) = Y 6(a;¢) = 1 and k be an entire function
aoo azoo

with regular growth having non zero finite order and © (oo; k) = ; Op (a;k) = 1oré (o0;k) =
a+oo
Y. 0(a;k) = 1. Also let f be a meromorphic function and h be an entire function such that
a#oo
P;%* (f,h) < oo, AFL; (g,k) > 0 and Tﬁ* (g) < oo, where p is any positive integer. If h satisfy the

Property (A) and expP "1 L (M, (1)) = 0 ([r exp L (r)]ﬁ) asr — oo and for some positive <
A;Lf (g), then
log T, 'Tyog (1) e T ()

®log Ty 1 Ty (exp [rexp L (r)] ) Ay (8k)
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The proofs of the above two theorems can be carried out in the line of Theorem 1 and
Theorem 3 respectively and therefore their proofs are omitted.

In the line of Theorem 5 and Theorem 6 respectively and with the help of Lemma 4, one
can easily prove the following two theorems and therefore their proofs are omitted.

Theorem 7. Let meromorphic function f and entire function h satisty the conditions of Lemma
4. Also let g be an entire function and 0 < AlLﬂ* (f,h) < p’%* (f,h) < oo, Tlg* (g) < oo, where p is
any positive integer. If h satisty the Property (A) and exp!?~UL (M, (r)) = o <[r exp L (r)]ﬁ>
asr — oo and for some positive p < Al%* (g), then

. log T}, ' Tfog (1) < BTy (8)

faiil) _ L* — L*
log Ty Ty (exp [rexp L (n)]' @) Ay 1)

Theorem 8. Let g be a transcendental entire function of finite order or of non-zero lower order

such that Y, 61(a;¢) = 4 and k be a transcendental entire function with regular growth
aeCU{co}

and non zero finite order and Y, J1(a;k) = 4. Also let f be a meromorphic function and
aeCU{co}

h be an entire function such that pp* (f,h) < oo, A;Lj* (g,k) > 0 and Tﬁ* (g) < oo, where p is
any positive integer. If h satisfy the Property (A) and exp!P~1 L (Mg (r)) =0 <[r exp L (1’)]5>

asr — oo and for some positive < Aﬁ* (g), then

i log Ty, 'Troq (1) _ ()
=olog Ty by Tugg) (exp [rexp L] &) = Ay (&/0)

Using the concept of the growth indicator Té* (g) of an entire function g, we may state the

subsequent two theorems without their proofs since those can be carried out in the line of
Theorem 1 and Theorem 3 respectively.

Theorem 9. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 3. Also let g be an entire function and 0 < A’Lq* (f,h) < oo, T’Lq* (g) < oo, where p is

any positive integer. If h satisfy the Property (A) and exp!P~1 L (Mg (r)) =0 ([1’ exp L (1’)]5>
asr — oo and for some positive < Al%* (g), then

log Tl;leog (r) < 7L (2)
= 4 .

lim =
=log Tyl Tryis) (exp [rexp L (1))

Remark 7. In Theorem 9 the condition 0 < A;Lf (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < oo. If we will replace this condition by 0 < AlLﬂ* (f,h) < pp* (f,h) < oo, then

— 108 T, Tyog (1) oy ()T ()
= — Wy S AL (A
log TPO[h] Tpy[f] (exp [rexp L (r)]"" ) p

Theorem 10. Let entire functions § and k satisfy the conditions of Theorem 3. Let f be a
meromorphic function and h be an entire function such that )\’Lq* (f,h) < oo, )Ll%* (g,k) >0
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and TI%* (§) < oo, where p is any positive integer. If h satisfy the Property (A) and
explP~ UL (Mg (r)) =0 <[r expL (r)]ﬁ) asr — oo and for some positive p < AL (g), then

8T T ) G T @
=22 % _ L* _— L* .
108 Ty iy T <eXP rexp L (r)]" (g)> Ay (k)

(6)

Remark 8. In Theorem 10, if we will replace the condition Ale* (f,h) < co by p;%* (f,h) < oo,
then is need to go the same replacement in right part of (6).

Remark 9. In Theorem 10, if we will replace the conditions Al%* (f,h) < o0 and )\y (g,k) >0
by p;%* (f,h) < o and p;%* (g,k) > 0 respectively, then is need to go the same replacement in
right part of (6).

In the line of Theorem 9 and Theorem 10 respectively, one can easily prove the following
six theorems and therefore their proofs are omitted.

Theorem 11. Let the meromorphic function f and entire function h satisfy the conditions of

Lemma 4. Also let § be an entire function and 0 < )\’Lf (f,h) < oo, ?’Lﬂ* (g) < oo, where p is

any positive integer. If h satisfy the Property (A) and exp!P~ L (M, (r)) = o ([1’ exp L (r)]ﬁ>
asr — oo and for some positive p < )‘l%* (g), then

log T 1T, .
lim %ok Teel) ot (q).

7log Tyhy Tuis (exp [rexp L (n)] )

Remark 10. In Theorem 11 the condition 0 < A;Lf (f,h) < oo can be replaced by the condition
0< pl%* (f,h) < oo. If we will replace this condition by 0 < AlLﬂ* (f,h) < pp* (f,h) < oo, then

fim log T, ' Tyog (1) o5 (f1) -7 (3)
e FE) S AL (fh)
log Trapn Ty <exp [rexp L (r)]"" ) p o\

Theorem 12. Let the entire functions ¢ and k satisfy the conditions of Theorem 4. Let f be
a meromorphic function and h be an entire function such that A’Lq* (f,h) < oo, AI%* (g, k) >0

and ?;%* (§) < oo, where p is any positive integer. If h satisfy the Property (A) and
explP"UL (Mg (r)) =0 ([r exp L (r)]ﬁ) asr — oo and for some positive f < )\;%* (g), then

im log Ty Ty (1) M T ()
r=log TA_/I%k]TM[g] <eXP [r eXPL(V)]AI’; (g)) - Ay (8:k)

(7)

Remark 11. In Theorem 12, if we will replace the condition A;Lf (f,h) < co by p;%* (f,h) < oo,
then is need to go the same replacement in right part of (7).

Remark 12. In Theorem 12, if we will replace the conditions )\’%* (f,h) < o0 and AlLﬂ* (g,k) >0

by p’%* (f,h) < o and pl%* (g,k) > 0 respectively, then is need to go the same replacement in
right part of (7).
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Theorem 13. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 5. Also let g be an entire function and 0 < pp (f h) <pg 0p " (f,h) > 0, where p is any

positive integer. If expP~1 L <exp <re (r ))ﬁ> =0 <{r expl’l L (r)}ﬁ> (r = o) forany g > 0,
then
__logT; 'Tog (reL(ﬂ) N AL* (f,h)

lim = >
Toyitg Trots) (1) (Bt ) b (f, 0

r—roo
TPyH]

Proof. From the definition of relative ,L*- type of meromorphic function and in view of Lemma
5, we obtain for all sufficiently large values of r that

05" (Polf1,Polh])

Tt Tag (1) < (o8 (Rof], Po[h]) +e) [rexpl L(r)] :
. : T, E(f)
1.e. P [h] TPO[f] ( ) < ( (::;EZ ) ;% (f/ h) + 8) |:1" exp[p] L (r)]p . (8)

As0 < p’%* (f,h) < pg, we obtain in view of Lemma 10 for a sequence of values of r tending to
infinity that

log T, 1Tfog (re (r )) > logT, Tf (exp (T’e (r ))%*(fﬁ)) e
log Th_leog <reL(r)> > <)‘;L9* (f,h)— 8) “reL(V)]plﬁ* () + exp[l’—ﬂ L (exp <reL(7))pI’;* Ulh))] .

Therefore from (8) and above, it follows for a sequence of values of r tending to infinity that

log T_le (ret) (A5 (7)) [[”L(r)rﬁ*(f'h) +expllL <exp (reL(r)y%*(f,h))]
o8
- .

el 1 «
Toul Toots) (1) ((M) ok (Fh) + e) [rexplt L ()] U

TPy[n]

exp[”’*” L <exp(reL(r))PlL’*<f’h>> ; .
Si li 7 =0 =11, ( L(r) > _ < vl >
1mnce r1—>nt;lo [rexp[’”] L(r)]p;Lz £ as exp exp <7’€ ) 0 [1’ exp (1’)}

(r = oo) for any & > 0, we obtain from above that

_og Ty Ty (1) A (1)

lim
IS -1 -
r— TPO [I’l] TPO [f] (r) (::1;051(] ) Ph . (f h)
0
Thus the theorem follows. O

Remark 13. If we take T " (f,h) > 0 instead of 0’ " (f,h) > 0 and the other conditions remain
the same, then with the help of Lemma 6, one can easily verify that the conclusion of Theorem
13 remains valid with Uﬁ (f,h) replaced by T T " (f,h).
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In the line of Theorem 13 and in view of Lemma 7, one can easily prove the following
theorem and therefore its proofs is omitted.

Theorem 14. Let the meromorphic function f and entjre function h satisfy the conditions of
Lemma 7. Also let g be an entire function and 0 < p’7 (f, 1) < pg 0y L (f,h) > 0, where p is any

positive integer. If expP~1 L <exp <reL( ))ﬁ> =0 <{r expl’l L (r)r> (r — co) forany g > 0,
then

E1ogT,;1Tfog (ret) N AL (F )
o 1 = T :
" TM[h] Tmis) (r) Ty — (T —Yms)©(005f) \ Ph Lol (f,h)
Taapn) = (T =7 mpn)) © (00;h) P\

Remark 14. If we take T " (f,h) > 0 instead of 0’ " (f,h) > 0 and the other conditions remain
the same, then with the help of Lemma 8, one can easily verify that the conclusion of Theorem
14 remains valid with 0’ " (f,h) replaced by T T " (f,h).

Theorem 15. Let the meromorphic function f and entire function h satisty the conditions of
Lemma 5. Also let g be an entire function, h satisfy the Property (A), p;%* (f,h) = p;%* (9),

0’5* (g) < ooando (7 " (f,h) > 0, where p is any positive integer.
(a) If explP~1 L (Mg( ) = { mopi Trolf] (7 )} then

im 10g T}? Tfog (T) < pL* (f h) L*( )

r~>00TP i Tpip (1) + explP~1 L (Mg (1)) — <7P0[f]> 7 __L* (f, h)

VRo[h)
(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then
Tim 1o T Tyeg (1) < (.
— 'p

lim
H<><>TP i Trors) (1) + expP~U L (M, (r))

Proof. Let us consider that « > 2 and § — 17 in Lemma 14. Since T, 1 (r) is an increasing func-
tion of r, it follows from Lemma 9, Lemma 14 and the inequality Tg(r) < log Mg (r) (cf. [13])
for all sufficiently large values of r that

Ty ' Trog (r) < T, ' [{140(1)} Tp (Mg ()],
ie. T 'Trog (r) <a [T (Mg ()],
ie. logT, 'Tfoeg (r) <log T, 1Tf (Mg (r)) +0(1),
ie. logT, 'Tog(r) < <pp (f, ~|—e) <logMg( r) +expP UL (M, (r))) +0(1),
L*(
ie. logTy Trog (1) < (p5 (£, 1) +¢) (oF (8)+¢) [rexpl? L (r)]" ¢
+ (05 (1) +¢) expl L (Mg (1)) +O(1).
In view of condition (ii) we obtain from above for all sufficiently large values of r that
' : b
log Ty Trug (1) < (o5 (£,) +¢) (0F () +¢) [rexp L(1)]”

)
+ (pp (fh) +¢) expl = L (Mg (r) +O(1).
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Again from the definition of relative ,L*-lower type we get in view of Lemma 5, for all suffi-
ciently large values of r that

_ g+ o5 (Polf),Polh])
TolyTein (1) = (35 (R A1, Po () —¢) [rexpl? L (r)]” e

1
~ Trolf] \ " oL ()
T Trots] (1) = (( ‘m) Ty (f,h)e) [reXpML(r)] P e

Y Py[h] (10)

Fun Tpo i Trols) (1)
ARy L '
<<7Pg[h})ph 7y (A ) _8>

Now from (9) and (10), it follows for all sufficiently large values of r that

Tpofh] Tpyip) (1)

TrRylf] —L*
((”Vpg[h]) h. (f h> )
+ (p;%* (f,h) + e) expP UL (Mg (1)) +O(1),

log T{leog (r) < O(1)
Tl;o%h] Tpyp) () +expl? 1 L (Mg (r)) — 1;0%11] Ty (r) +explP =1 L (Mg (r))
(05" (£, h)+8)( “(9)+e)
TR\ Ph _px .
((”P&h]) 7 ()= ) (o} (f) +¢)

1 exp[P*l] L(Mg(r)) " TI:Ol[h] TPOU] (7‘)
leol[h] Tp,5(r) explr—1l L(Mg(r)>

log Ty, Tyog (r) < (5 (f,1) +¢) (oF () +e)

(11)

+

IfexplP~1 L (Mg (r)) =0 {Tl;o%h} Tpy(f] (r)} then from (11) we get that

- log T ' Tyo, (1 oL (f.h) +¢) (o} (g) +e
T, HTPoLf](g)feX;[pg_(”)L (M () (((W)pl’ 3L< (; ljs>).
TPyl P
Since e (> 0) is arbitrary, it follows from above that
= 108 Ty Tyeg (1) AR A
= Ty i Trots) (1) +explP L (Mg (r) (%)Plh TV (Fh)

Thus the first part of the theorem follows.
Since ¢ (> 0) is arbitrary, and if TP o Tyl (r) = o {exp[f’_l] L (Mg (r))} then from (11) it

follows that

T log Th’leog (r)

7= Ty i Tror) (r) + explP =1 L (Mg (r))

Thus the second part of the theorem is established. O

< oy (fh).
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Theorem 16. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 5. Also let g be an entire function, h satisty the Property (A), ple* (f,h) = p;%* (9),

A;Lq* (f,h) < oo, E;%* (f,h) > 0and 0'5* (g) < oo, where p is any positive integer.

(a) IfexplP=U L (Mg (r)) = 0 {Tl’_o%h} Tpy(f] (r)} then

10g T, Tyog (1 _ A (@)

lim — = < : .
r=oTp iy Tryjf) () +exp? U L (Mg (1)) (i) gL (£, )
0

(b) If Tl;o%h] Tpyf) (1) =0 {exp[f’_l] L (M, (r))} then

log T, T,
Jim — ogT), T g(lr)
rﬁooTPO[h] Tpo[f] (1’) —}—exp[p* ] L (Mg (1’))

< AL (fh).

We omit the proof of the above theorem as it can be carried out in the line of Theorem 15.

Remark 15. In Theorem 16, if we take p" (f, h*) =05 (8), 0F (f,h) > 0and 0} (g) < co in-
stead ofpl%* (f,h) = pl%* (2), )\’%* (f,h) < oo, E’% (f,h) > 0and O’F (g) < oo and the other con-
ditions remain the same, then one can easily verify that the conclusion of Theorem 16 remains
valid with Al%* (f,h) replaced by p’%* (f,h) and E’Lf (f,h) replaced by 0’5 (f, h) respectively.

Remark 16. {n Theorem *16, if we take p;%* (f, h) = p;%* (9), E;%* (f, hz > 0 and Eﬁ* (g) < o0
instead ofp;% (f,h) = p;% (2), A;% (f,h) < oo, E; (f,h) > 0 and 0’5 (g) < o0 and the other
conditions remain the same, then one can easily verity that the conclusion of Theorem 16 re-
mains valid with )\’%* (f,h) replaced by p’%* (f,h) and (715* (g) replaced by E’%* (g) respectively.

Similarly using the concept of the growth indicator TPL* (f,h) and Tg* (g) we may state the
subsequent two theorems without their proofs since those can be carried out in view of Lemma
6 and in the line of Theorem 15 and Theorem 16 respectively.

Theorem 17. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 6. Also let g be an entire function, h satisfy the Property (A), pl%* (f,h) < oo, Al%* (f,h) =

Al%* (g), ?l%* (g) < o0 and T’F (f,h) > 0, where p is any positive integer.

(a) IfexpP~U L (M, (r)) = o {TI;O}M Tp (r)} then
- log T, Ty (1) _ AT (©
=S Tgt Trois) () +explP L (Mg (1) ™~ (%)ﬁfﬁ* (f, 1)
0

(b) I Ty by Ty ) (r) = 0 {exp[P—ll L (M, (r))} then

= logT}lefog (r) < pL* ().
=Ty i Trr) (r) +explr =1 L (Mg () — 77

Remark 17. In Theorem 17, if we replace the condition )\;%* (f,h) = A;Lf (g) and ?5 (g) < oo by
AlLﬂ* (f,h) = plLﬂ* (g) and O’F (g) < oo and the other conditions remaﬂz the same, then onf' can
easily verify that the conclusion of Theorem 17 remains valid with ?l% (g) replaced by (rlg (9)-
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Remark 18. In Theorem 17, if we take p’%* (f,h) = Al%* (g), Tl%* (g) < oo and T (7 (f h) >

instead ofp;%* (f,h) < oo, A;%* (f,h) = A;%* (9), ?;%* (g) < o0 and T;7 “(f,h) >0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 17

remains valid with Tig (f,h) replaced bya (f,h).

Theorem 18. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 6. Also let g be an entire function, h satisfy the Property (A), Al%* (f,h) = Al%* (g),
—L*
T
p

(a) IfexpP~U L (M, (r)) = {TI;O%H Tp (r)} then

(¢) < o0 and Tﬁ* (f,h) > 0, where p is any positive integer.

i log T, Tyeg (1) MU
r=oo Ty 02 Tpp) (r) + explP UL (Mg () ~ (myy
Po[n) L Polf) T £ <7Pg[h]) . (f h)

(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then

log T 1Ty,
li_m — 0g 1y f g(lr)
rﬁooTPO[h] Tpo[f] (1’) —}—exp[p* ] L (Mg (1’))

< Ag‘ (f,h).

Remark 19. In Theorem 18, if we take p;%* (f,h) < oo, )\;%* (f,h) = )\;%* (g), ?5 (g) < oo and

?’%* (f,h) > 0 instead of}\l%* (f,h) = AlLﬂ* (g), ?’%* (g) < o0 and Tlg* (f,h) > 0 and the other con-
ditions remain the same, then one can easily Verjfy that the conclusion of Theorem 18 remains

valid with Al%* (f, h) replaced by p’%* (f,h) and T " (f, h) replaced byT " (f, h) respectively.

Re*mark 20. In Theorem 18,*1’f we take pé* (f, h) *< 0o, A;%* (f, h) :*A;Lj* (g), Tﬁ* (g) < o0 and
Tﬁ (f,h) > 0 instead of)\;% (f,h) = A;Lq (g),?;% (g) < o0 and Tﬁ (f,h) > 0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 18

remains valid with AlLﬂ* (f,h) replaced by pl%* (f,h) and ?’%* (g) replaced by Tlg* (g) respectively.

Remark 21. In Theorem 18, if we replace the conditions Al%* (f,h) = Al%* (g) and ?’Lq* (g) < o0
by A;Lj* (f,h) = ple* (¢) and (7;%* (g) < o0 and the other conditions remain the same, then one can
easily verify that the conclusion of Theorem 18 remains valid with T;L: (g) replaced by (7;%* (8)-

Remark 22. In Theorem 18, if we take pp* (f,h) = AlLﬂ* (g), TIL: (g) < o0 and @ 0’ “(f,h) >

instead of)\’%* (f,h) = )\’Lq* (g), ?l%* (g) < o0 and Tﬁ* (f,h) > 0 and the other cond1t1ons remain

the same, then one can easily verify that the conclusion of Theorem 18 remains valid with
(f h) replaced by(T " (f,h).

In the line of Theorem 15, Theorem 16, Theorem 17 and Theorem 18 and in view of Lemma
7 and Lemma 8, one can easily prove the following four theorems and therefore their proofs
are omitted.

Theorem 19. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 7. Also let g be an entire function, h satisfy the Property (A), p’%* (f,h) = p’%* (g),
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L*
Ty

(a) Ifexp[vfllL(Mg( ) = { Ty b Toyir) (7 )} then

(¢) < o0 and T (T " (f,h) > 0, where p is any positive integer.

E T logTh_leog (1’) < (f h) L ( )

lim =y < Ip
rﬁOOT Mlh ]TM[f] ( ) + exp p L (Mg (1’)) T i~ (FM[f] Y1) @(c0;f) _p
Tt — (T papn) =7 ) ©(003h)

(b) I Ty by Ty ) (r) = 0 {exp[vfll L (M, (r))} then

T log Th’leog (r)
m
w»w];RMYhﬁﬂ(r)4-exphF4]L(A4g(r»

< oy (f/h).

Theorem 20. Let the meromorphic function f and entire function h satisty the conditions
of Lemma 7. Also let ¢ be an entire function h satisty the Property (A), AL* (f,h) < oo,

p;%* (f,h) = p;%* (8), (TE (¢) <andc (7 " (f,h) > 0, where p is any positive integer.
(a) IfexplP~U L (Mg (1)) = {TP_o[h} Tpyi) (7 )} then

Lim log T}lefog (r) < /\ILﬂ* (f/h)-o L* (8)

a0 ] _ — 1 :

r=eo Ty iy T (r) +expl? =1 L (Mg (r)) g~ (g =1 )OO\ ot gy
Taapn) — (T i) =7 mpn)) @ (o05h) Tp U

(b) If Tl;[h] Tpyf) (1) =0 {exp[f’_l] L (M, (r))} then
lim log T, 'Tyog )
r%ooTM[h] M) (1) +explP~U L (Mg ()

Remark 23. In Theorem 20, if we take p§’ (f, @ =05 (8), 0F (f,h) > 0and o} (g) < oo in-
stead ofpl%* (f,h) = pl%* (2), )\’%* (f,h) < oo, E’% (f,h) > 0and O’F (g) < oo and the other con-
ditions remain the same, then one can easily Verify that the conclusion of Theorem 20 remains
valid with AL (f,h) replaced by p’7 (f,h) ando (7 (f,h) replaced by0' " (f,h) respectively.

< AS(fh).

Remark 24. In Theorem 20, if we take pp (f,h) = p;% (2), E;%* (f,h) > 0 and Eﬁ* (g) < o0
instead ofp;%* (f,h) = p;%* (2), A;Lf (f,h) < oo, E;%* (f,h) > 0 and 0’5* (g) < o0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 20
remains valid with )\’%* (f,h) replaced by p’%* (f,h) and (715* (g) replaced by(_rl%* (g) respectively.

Theorem 21. Let the meromorphic function f and entire function h satisty the conditions
of Lemma 8. Also let ¢ be an entire function, h satisfy the Property (A), pl%* (f,h) < oo,

AFL; (f,h) = AFL; (g), T;%* (g) < o0 and TL* (f,h) > 0, where p is any positive integer.

(a) IfexplP=U L (Mg (1)) = { moli TPo1f] (r)} then

im 10g Tﬁleog( ) < p;Lﬂ* (f/h> .?;Lﬂ* (g>
T )
H°°TM[h] mif) (r) +explP U L (Mg (r)) o= (Cag) = 7)) O(oif) N £ s (f,h)
T anin) — (T =1 M) © (00;h) P\
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(b) I Ty Ty () = 0 {exp[vfll L (M, (r))} then

= log Th_leog (r)
rﬁooT M[h }TM[f] (r) +explP~1 L (Mg (7))

Remark 25. In Theorem 21, if we replace the condition )\;%* (f,h) = A;Lf (g) and ?;L?* (g) < coby
AlLﬂ* (f,h) = pl%* (g) and O’F (g) < oo and the other conditions remain the same, then one can

< py (f.h).

easily verify that the conclusion of Theorem 21 remains valid with ?L* (g) replaced by O’L* (9)-

Remark 26. In Theorem 21, if we take pp* (f,h) = )\’Lf (g), ?l%* (g) < o0 and T 0’ “(f,h) >

instead ofpl%* (f,h) < oo, Al%* (f,h) = Al%* (3), ?l%* (g) < o0 and Tp “(f,h) >0 and the other
conditions remain the same, then one can easily verify that the conclusion of Theorem 21

remains valid with TPL (f,h) replaced bya (f,h).

Theorem 22. Let the meromorphic function f and entire function h satisfy the conditions of
Lemma 8. Also let g be an entire function, h satisfy the Property (A), A;%* (f,h) = A;%* (g),

Té* (g) < o0 and Tig* (f,h) > 0, where p is any positive integer.
(a) IfexplP=U L (Mg (1)) = { moli TPo 1] (r)} then

log T;leog (1) < A;%* (f,h)-T _L* (8)

lim =y = T :
r_>°°TM[h] MI[f] (r) +explP=HL (Mg (r)) Tparf = (Daagg =Ygy ©(005f) P TL* (F, )
Tt — (Tt =Y i) @ (00;h)

(b) I Ty by Ty () = 0 {exp[vfll L (M, (r))} then

log T 1T,
lim — og Ty Troq (:)
r=eo Ty Ty () + expP~U L (M, (r))

Remark 27. In Theorem 22, if we take pl%* (f,h) < oo, AlLﬂ* (f,h) = AlLﬂ* (g), ?’%* (g) < oo and

?’Lﬂ* (f,h) > 0 instead of}\l%* (f,h) = Al%* (g) ,?’Lﬂ* (g) < o0 and Tﬁ* (f,h) > 0 and the other con-

ditions remain the same, then one can easily Verify that the conclusion of Theorem 22 remains
valid with Al%* (f, h) replaced by p’%* (f,h) and T " (f, h) replaced byT " (f, h) respectively.

< Ay (fh).

Remark 28. In Theorem 22, if we take p’%* (f,h) < oo, Al%* (f,h) = Al%* (g), T’F (g) < oo and

T’F (f,h) > 0 instead of A’Lq* (f,h) = Al%* (g), ?l%* (g) < oo and T’F (f,h) > 0 and the other

conditions remain the same, then one can easily verify that the conclusion of Theorem 22
remains valid with A;Lq* (f,h) replaced by pp* (f,h) and ?;L?* (g) replaced by Tﬁ* (g) respectively.

Remark 29. In Theorem 22, if we replace the condition A;Lj* (f,h) = A;Lj* (g) and Tl%* (g) < oo by
AFL; (f,h) = p;%* (g) and 0'5* (g) < oo and the other conditions remair: the same, then one can
easily verify that the conclusion of Theorem 22 remains valid with ?L (g) replaced by O’L (9)-

Remark 30. In Theorem 22, if we take p;%* (f,h) = )\;%* (g), ?;L?* (¢) < c0and o (7 “(f,h) >

instead of)\’%* (f,h) = )\’%* (g), TIL: (g) < o0 and T’F (f,h) > 0 and the other cond1t1ons remain

the same, then one can easily verify that the conclusion of Theorem 22 remains valid with
(f h) replaced by o 0’ (f, h).
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Theorem 23. Let f be a meromorphic function either of finite order or of non-zero lower order
such that © (co; f) = Y 6y (a;f) =1 ord(eo;f) = ¥ &(a; f) =1 and h be an entire function
azoo a#oo

having regular growth and non zero finite order with® (co;h) = Y 0y (a;h) = 1 ord (co;h) =
a#oo

ﬂ;ooé (a;h) = 1. Also let g be an entire function and 0 < A;Lf (f,h) < p;%* (f,h) < oo, where p is
any positive integer. Then

= log T;, ' Tfog (1) >A,Lj (f,h)

lm - * 4
r=®log Ty b Ty (expr) — o (f/h)

where 0 < p < pg < co.
Proof. In view of Lemma 10, we obtain for a sequence of values of r tending to infinity that
log T{leog (r) > log T}lef (exprt),
ie. log T,;leog (r) > (Al%* (f,h) — s) [rV +explP UL (exp r”)} : 12

Also in view of Lemma 5, and for any arbitrary € (> 0), it follows for all sufficiently large
values of r that

log Tl;o%h] Tpy(f) (expr?) < <p§* (Po [f],Po[H]) + s) {r” + exp[p’” L (exp r”)} ,

. (13)
ie. log Tl;o%h] Tpy(f) (expr?) < <pf7 (f, h)+ 8) {r” +expP UL (exp r”)] .
Now from (12) and (13), we get for a sequence of values of r tending to infinity that
log Ty 'Trog (1) (AL (f,1) —e) | +explr U L (exprh)]
log Ty, Tays) (@XP 1) (k" (f,h) +¢) [ +explP= L (exp )]
Since e (> 0) is arbitrary, it follows from above that
—_ log T, 'Trog(r) . AL (fh)
e Taly T e 74 U1
Thus the theorem follows. O

Theorem 24. Let f be a meromorphic function, g be an entire function either of finite order or
of non-zero lower order such that © (o0;¢) = Y 6, (a;8) = 1ord(o0;8) = L d(a;8) =1
aoo aoo

and h be an entire function having regular growth and non zero finite order with ® (oo; h) =

Y Op(a;h) =1oré(co;h) = 3 6(a;h) =1. Let0 < Afand 0 < A;Lf (g,h) < p;%* (g, h) < oo,
a#co aF#oo
where p is any positive integer. Then

*

T log T;leog (r) - A’Lq (g, h)
r=log T 1y Trifg (expr*) — Py (&/h)

4

where 0 < p < pq.
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We omit the proof of the above theorem as it can be carried out in the line of Theorem 23
and with the help of Lemma 11.

In the line of Theorem 23 and Theorem 24 respectively, one can easily prove the following
two theorems and therefore their proofs are omitted.

Theorem 25. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order and Y, d1(a;f) = 4 and h be a transcendental entire function of regular
aeCU{co}
growth having non zero finite order with Y.  61(a;h) = 4. Also let g be an entire function
aeCU{oo}

and 0 < A;L; (f,h) < p;%* (f,h) < oo, where p is any positive integer. Then

—_ log T, 'Trog () - AL (f.h)
r—]og TA;I%h] Typ) (exprt) — o5 (f,h)’

where 0 < p < pg < 0.

Theorem 26. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that Y.  01(a;g) = 4 and h be a transcendental
aeCU{co}
entire function of regular growth having non zero finite order with Y.  61(a;h) = 4. Also
aeCU{co}

let0 < Afand0 < A;Lj* (g, h) < plL’* (g,h) < oo, where p is any positive integer. Then
T log Th_leog (r) - AlLﬂ* (g, h)
r—~log T]\?I%h] Tg] (exprt) — P;Lg* (g, h)’

where 0 < p < pq.
Theorem 27. Let f be a meromorphic function either of finite order or of non-zero lower order
such that © (co; f) = Y 6y (a;f) =1 ord(co;f) = ¥ &(a; f) =1 and h be an entire function
azoo aoo
having regular growth and non zero finite order with® (co; 1) = Y 0y (a;h) = 1 ord (co;h) =
a#oo

Y. 6 (a;h) = 1. Also let g be an entire function and 0 < A;Lf (f,h) < p;%* (f,h) < oo, where p is
a#oo
any positive integer. Then
 1og Ty ' Tpog (1) oy (f)
im — SSEF R
r%oolog TPO [4] Tpom (exp 7’”) Ap (f’ )

where Ag < p < 0.

Proof. In view of Lemma 12, we obtain for a sequence of values of r tending to infinity that
log Th_leog (r) <log Th_le (exprt),

ie. logT, T (r) < <ple* (f,h) + e) {rﬂ +expl? UL (exp rﬂ)] :

Also in view of Lemma 5, and for any arbitrary € (> 0), it follows for all sufficiently large
values of r that

log Tl;o%h] Tpy(f) (exprt) > <Al%* (Po[f],Po[h]) — e) [1’” +expl? UL (exp r”)] ,
ie. log Tl;o%h] Tp(f (expr?) > <AIL; (f,h) — 8) {r” + exp[p_l] L (exp r?‘)] :

(14)

(15)
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Now from (14) and (15) , we get for a sequence of values of r tending to infinity that

log Ty 'Trog (1) _ (o5 (f,h) +¢) [ +explr-Y L (expri)|
log T,y Tryts) (XP ) (AL (f,h) =€) [+ explr=1I L (exp )]

Since e (> 0) is arbitrary, it follows from above that

legTMy () e ()
r—wlog TP’O%h] Tpy(f (exprt) — AL (f 1)

Thus the theorem follows. O

Now we state the following theorem without its proof as it can be carried out in the line of
the above theorem and with the help of Lemma 13.

Theorem 28. Let f be a meromorphic function and g be an entire function either of finite order
or of non-zero lower order such that ® (00;¢) = Y 0y (a;8) =1l oréd(eco;8) = Y. d(a;8) =1
azoo aoo
and h be an entire function having regular growth and non zero finite order with ® (oo; h) =
Y Op(a;h) =1oré(co;h) = 3 6(a;h) =1. Let0 < Afand 0 < Al%* (g,h) < p’%* (g, h) < oo,
a#co aF#oo
where p is any positive integer. Then

L 10T T (1) _ ey (&)
r—olog Tl;o%h]Tpo[g} (exprt) — AL (g, 1)

where 0 < Ay < p < oo0.

In the line of Theorem 27 and Theorem 28 respectively, one can easily prove the following
two theorems and therefore their proofs are omitted.

Theorem 29. Let f be a transcendental meromorphic function of finite order or of non-zero

lower order with Y.,  61(a; f) = 4 and h be a transcendental entire function of regular
aeCU{oo}

growth having non zero finite order with Y.  é1(a;h) = 4. Also let g be an entire function
aeCU{oo}

and 0 < Al%* (f,h) < p’%* (f,h) < oo, where p is any positive integer. Then

T Mg () e (W)
r—wlog TA;I%h]TM[f} (expri) = AL (f,h)

where Ag < p < 0.

Theorem 30. Let f be a meromorphic function and g be a transcendental entire function of

finite order or of non-zero lower order such that Y.  61(a;g) = 4 and h be a transcendental
aeCU{o0}
entire function of regular growth having non zero finite order with Y.  d1(a;h) = 4. Also
aeCU{co}

let0 < Afand0 < )\’Lf (g,h) < p’%* (g,h) < oo, where p is any positive integer. Then

18T T (1) _ ey (&)
r—wlog TA;I%h]TM[g] (expri) — AL (g 1)

where 0 < Ay < p < co.
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Bicsac T. Ilpoepec y susuenni ananisy pocmy ougpepeHyianoHux noniHomis i OugpepeHyiatoHUX MOHOMIB
6 KoHmexcmi noginvto pocmatouux gynkyiii // KapmaTtcbki maTem. my6a. — 2018. — T.10, Nel. — C.
31-57.

AOCAipAKeHHsT aHaAi3y POCTy WiAMX UM MepOMOp(pHMX (PYHKIIM, SIK IIPaBMAO, TIPOBOAVIAVICS
depes Ix xapakTepucTnuHy pyHKIifo HeBaHAIHM B TOPiBHSHHI 3 TMMM eKCIOHEHIIMHMMI DYHKITI-
SIMI.  AAe SIKITIO TIOTPi6HO MOPIBHATH TeMIM 3POCTaHHs 6yAb-SKOI ITiA0l um MepoMopdpHOi dyH-
K1Iii BiAHOCHO iHIIIO1, TO OTPi6HO BMKOPMCTOBYBATH IOHSTTSI IHAMKATOPiB BiAHOCHOTO 3pOCTaHHSI.
O6AacTb AOCAIAXKEHHS B Till TaAy3i MoXKe OyTH GiABIT 3HAUMMOIO Uepe3 iHTeHCHBHI 3aCTOCYBaHHS
TeOpili MOBIABHO 3pocTaroumX pyHKII, 110 dpakTiyHO o3Havae, wo L(ar) ~ L(r) mpur — o0 AAs
KOXXHOI AOAQTHBOI KOHCTAaHTU 4, TO6TO rlgglo %%) =1, ae L = L (r) — aonaTHs HemepepBHa (PyH-
KIIisI, SIKa TTOBIABHO 3pocTae. BaacHe, B 1il1 pobOTi MU OTpMMaAM AesIKi pe3yAbTaTH, IO 3aAeXaTh
BiA BAACTMBOCTEN BiAHOCHOTO 3POCTaHHSI KOMIIO3MIINM HiAMX i MepoMopdHMX (pyHKIIi, BUKOPU-
CTOBYIOUM iA€H0 BiAHOCHOTO ,L*-TIOpsIAKY, BiAHOCHOTO ,L*-TUIy, BiAHOCHOTO ,L*-cAabkoro Tumy i
AMdpepeHIiaAbHIX MOHOMIB, AMdpepeHIIiaAbHIX IIOAIHOMIB, TOPOAKEHIMX OAHMM 3 KoedpillieHTiB; 11i
Pe3yAbTaTH MOLIMPIOIOTH AesIKi TIONepeAHi pe3yAbTaTH, Ae ,L* € HiumM iHImM sIK cAabLmM mpurty-
IIeHHsIM Ha L.

Kmouosi cnosa i ¢ppasu: mnira dpyHxuis, MepomopdHa yHKIIsI, BiaAHOCHWMI ,L* TOpsIAOK, Bia-
HOCHWI ;) L™ Tum, BiaHOCHWI ;L™ cAabkmit T, picT, AndpepeHIiaAbHMI MOHOM, AMdpepeHIIiaAbHI
TIOAIHOM, (PYHKIIiSI IOBIABHOTO POCTY.
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BODNAR O.S.1, DMYTRYSHYN R.I.2

ON THE CONVERGENCE OF MULTIDIMENSIONAL S-FRACTIONS WITH
INDEPENDENT VARIABLES

In this paper, we investigate the convergence of multidimensional S-fractions with independent
variables, which are a multidimensional generalization of S-fractions. These branched continued
fractions are an efficient tool for the approximation of multivariable functions, which are repre-
sented by formal multiple power series. For establishing the convergence criteria, we use the con-
vergence continuation theorem to extend the convergence, already known for a small region, to a
larger region. As a result, we have shown that the intersection of the interior of the parabola and
the open disk is the domain of convergence of a multidimensional S-fraction with independent
variables. Also we have shown that the interior of the parabola is the domain of convergence of
a branched continued fraction, which is reciprocal to the multidimensional S-fraction with inde-
pendent variables. In addition, we have obtained two new convergence criteria for S-fractions as
consequences from the above mentioned results.

Key words and phrases: convergence, uniform convergence, S-fraction, multidimensional S-frac-
tion with independent variables.
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1 INTRODUCTION

Establishing convergence criteria for the classes of functional branched continued fractions
with independent variables is one of the most important tasks of their studying.

A convergence criteria have been given in [1, 2, 5] for multidimensional regular C-fractions
with independent variables

N
1+Z

i=1

i ip
Zzl Zz Zz

Z

where the a;(, i(k) € Zy, k > 1, are complex constants such that a;) # 0, i(k) € Zy, k > 1,

T = {i(k) - i(k) = (i1,d2,...,0), 1 <ip <ipq, 1< p<k ig=N}, k>1,

denote the sets of multiindices, and where z = (z1,2,...,2N) € CN, in [8] for multidimen-
sional g-fractions with independent variables

s N Qi(1)zi at giz(l )Zi 2 g Si(2))Zi
T() Z:: i Z (2) 2 Z:: 8i(2) 12_}_...,

YAK 517.524
2010 Mathematics Subject Classification: 32A17, 40A99, 30B70, 40A15.

(© Bodnar O.S., Dmytryshyn R.I., 2018



ON THE CONVERGENCE OF MULTIDIMENSIONAL S-FRACTIONS WITH INDEPENDENT VARIABLES 59

where the s is positive constant and the Si(k) i(k) € Zy, k > 1, are real constants such that
0 <gip <11 (k) € Iy, k > 1,and z € CY, in [6] for multidimensional associated fractions
with independent variables

N b'(l)zil i (—1)‘51‘111‘2[91-(2)21-121-2 i (—1)‘512/13bi(3)zi221-3

1
(D D e 1 sy 1 +

=1 =1 =1

where the b;), i(k) € Zy, k > 1, are complex constants such that b;) # 0,i(k) € Zy, k > 1, and
5k,p is the Kronecker delta, 1 < k,p < N,z € CN, and in [7] for multidimensional J-fractions
with independent variables

‘ 2 2
i 121 ~Pi) y “Pipy

=1 + Zn =1 qi(2) * Zip + 121 9i3) +2is +
where the p; ) and g;(), i(k) € Zy, k > 1, are complex constants such that p;) # 0, i(k) € Iy,
k > 1,and z € CV. In this paper, we investigate a convergence of mu1t1d1mens1onal S-fraction
with independent variables

N ci1)Zi Ci(2)Zi 2 Cii3)Zi
i(1)%i i(2) i(3)%i
1+‘§7 - 1+‘§ . +‘§7 13+---, (1)

where the Ci(k)/ i(k) € Iy, k > 1, are real constants such that Ci(k) > 0,z € CN,and reciprocal
to it

»—\|»—\

i (1)%i 121 Ci(2)Ziy Ii Ci(3)%is %)
: 12:1 1 + i3:1 1 +

We note that the multidimensional S-fraction with independent variables (1) is multidi-
mensional generalization of S-fraction

1z 0z €3z
e 3

1+14+ 1+ ®)
where the ¢, k > 1, are real constants such that ¢, > 0,k > 1,z € C. A convergence result for
S-fraction is as follows (see Theorem 4.58 [9, p. 136]).

Theorem 1. Let (3) be an S-fraction and let H = {z € C : |arg(z)| < 7} be the complex plane
cut along the negative real axis. Then the following statements hold.
(A) The S-fraction (3) converges to a function holomorphic in ‘H if at least one of the two
series
i C1C3 ... Czk,ll > C2C4...Cok—2
=1 C2Cq . ..Cok =1 C1C3...Cok—1

diverges.

(B) If the S-fraction (3) converges at a single point in H, then it converges at all points in H
to a holomorphic function.

(C) A sufficient condition for an S-fraction (3) to converge to a function holomorphic in H
is that there exists a constant M > 0 such thatc, < M, k > 1.
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2 CONVERGENCE

We give two convergence criteria for multidimensional S-fraction with independent vari-
ables (1). For use in the following theorems we introduce the notation for the tails of (1):

Qfgj) (z) =1, i(n) € Ty, n > 1, (4)
k+1 Ci(k+1)Zixs1 g Ci(k+2)Ziy o (= Ci(n)Zi,
( fer1=1 + fkr2=1 1 R R

wherei(k) € Iy, 1 <k <n—1, n > 2.1tis clear that the following recurrence relations hold

Q@) =1+ Y W gy e 1 <k<n-1,n2>2 (6)
irr1=1 Qi(k+1)(z)

Let fu(z) = 1+ 211 1 5 ('1) be the nth approximant of (1), n > 1.

f<1) z
Theorem 2. A multidimensional S-fraction with independent variables (1), where the c;y),
i(k) € Iy, k > 2, satisfy the conditions

i
Y Ciggny < ik) €T, k> 1, ?)

fy1=1
where r is a positive number, converges to a function holomorphic in the domain

cos?(a)
2r

Pr,M = U {Z S CcN . ’Zk’ Re(Zkeizilx) <

, |zl < M, 1§k§N} (8)
ae(—m/2,m/2)

for every constant M > 0. The convergence is uniform on every compact subset of P, j.

Proof. Let a be arbitrary number from the interval (—7/2, 71/2) and let n be arbitrary natural
number. Using relations (6), by induction on k for arbitrary of multiindex i(k) € Z; we show
that the following inequalities are valid

>0, )

where 1 < k < n.

It is clear that for k = n, i(n) € Z,, relations (9) hold. By induction hypothesis that (9) hold
fork=p+1,p<n-1i(p+1) € Z,41, we prove (9) for k = p, i(p) € Z,. Indeed, use of
relations (6) for arbitrary of multiindex i(p) € Z, lead to

Q) (z)e it = ot 4 Z PH Zipir® "
i(p) 1p+1 1 Q p—i—l)( )efux

In the proof of Lemma 4.41 [9] it is shown that if x > ¢ > 0 and v? < 4u +4,

, u+iv VuZ +02 —u
min Re — = — . (10)
—co<y<+oo X+ 1Y 2x
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_ . ,—2in _ . ,—2in _ (1) —in
We set u = Re(cj(py1)zi,,6 ), v = Im(cipy1)zi, 6 7%), x = Re(Qi(pH)(z)e ),
= Im(Q( )+1 (z)e=™). Then for the arbitrary index ip1, 1 < ip41 < ip, it follows from
(7) and (8) that

2
iy Y cos” ()
Citpa1)Zipne 2] — Re(cigpinyzi, e ) < 5

From this inequality it is easily shown that v* < 4u + 4.
Using (6)—(10) and induction hypothesis, we obtain

, ¢ z; | —Re(z; e %
Re(QE(n;)(z)e*’“) > cos(a) — Y (p+1) (17| (Ziy )

ipy1=1 2Re(Q((p)+1)( Je= )

> 0.

Z‘ .
XF’: Ci(p+1) €O8(4) - cos(a)

> cos(a) — o z—

ZP+1:1
It follows from (9) that Qf(nk)) (z) # 0 for all indices. Thus, the approximants f,(z), n > 1, of

(1) form a sequence of functions holomorphic in P, p;.
Again, let « be arbitrary number from the interval (—7t/2,77/2). And, let

‘ 2
Poorm = {z € CN ¢ |zi| — Re(zpe 2%) < (Tc%r(a)’ |zg] < oM, 1 <k < N} ,  (11)
where 0 < 0 < 1. We set
c= 12?1_11a§XN Ci(1)- (12)
Using (9), (11) and (12), for the arbitrary z € PuorM, Puorm C Prm, we obtain for n > 1
()2 | 2coM
‘f?l ‘<1+Z 11 . <1+27 (szorM>
11 1 Re(Q (1)( )e*“") 11:1 COS(OC)

where the constant C(P, ¢, pm) depends only on the domain (11), i.e. the sequence {f,(z)} is
uniformly bounded in P, ; , -
Let K be an arbitrary compact subset of P, p1. Let us cover K with domains of form (11).
From this cover we choose the finite subcover P“jlgj,r, M, 1 <j <k Weset
C(’C) = maxX C(Plleo'].,ylM).

1<j<k

Then for arbitrary z € K we obtain |f,(z)| < C(K), for n > 1, i.e. the sequence {f,(z)} is
uniformly bounded on each compact subset of the domain (8).
Let m = max{c,7,1/(2MN)} and let

£m:{zelRN 0<zf < —— 1§k§N}.

1
4mN’
Then for the arbitrary z € L, L1 C P, M, we obtain

c 1 r
| Z11| <= Am N 2N | (k+1 lk+1| < T 4mN S 4 (k) € Ik’ k Z 1.
It follows from Theorem 1 [4], with ;) = 1/2, i(k) € Iy, k > 1, that (1) converges in L,,. Hence

by Theorem 24.2 [10, pp. 108-109] (see also Theorem 2.17 [3, p. 66]), the multidimensional S-
fraction with independent variables (1) converges uniformly on compact subsets of P, js to a
holomorphic function. O
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The following theorem can be proved in much the same way as Theorem 2 using Theo-
rem 4 [4].

Theorem 3. A multidimensional S-fraction with independent variables (1), where the c;y),
i(k) € Iy, k > 2, satisfy the conditions Ci) < T i(k) € Iy, k > 2, wherer is a positive number,
converges to a function holomorphic in the domain

N ‘ 2 N
Dy pm = U {z eCV: ) <|zk| —Re(zke_zw‘)) < Coszr(oé)’ Yzl < M}

ae(—m/2,m/2) k=1 k=1
for every constant M > 0. The convergence is uniform on every compact subset of D, .

Next, we give two convergence criteria for multidimensional S-fractions with independent
variable (2). In addition to (4) and (5), for the tails of (2) we introduce the following notation:

N .oz i
©) (. — (m) (. — Ci()#i
Qi(O) (Z) - 1! Qi(O) (Z) =1+ Z 1 + 1'2;1

i1=1

Ci(2)Ziy 1 Ci(n)Ziy
. > 1.
D Dl e

ip=1

And, thus, the nth approximant of (2) we may write as ¢,(z) = 1/ QZ%;U (z),n>1.
Now we shall prove the following result.

Theorem 4. A multidimensional S-fraction with independent variables (2), where the c;y),
i(k) € Iy, k > 1, satisfy the conditions

i1
Z Ci(k) <r, l(k) ey, k>1, (13)

ir=1
where r is a positive number, converges to a function holomorphic in the domain

cos?(«)

P, = U {z € CN: |z¢| — Re(ze 2®) < P

,1<k<N } : (14)
ae(—m/2,m/2)
The convergence is uniform on every compact subset of P;.

Proof. Let a be arbitrary number from the interval (—7/2, 71/2). By analogy with (9) it is easy
to prove the validity of the following inequalities

cos(a)
2

>0, (15)

wheren > 1,0 < k < n-—1,i(k) € Z, if k > 1. It follows from (15) that Qf(r’kgl)(z) % 0 for
all indices. It means that the approximants g,(z), n > 1, of (2) form a sequence of functions
holomorphic in P;.

Again, let « be arbitrary number from the interval (—7t/2, 7/2). And, let

o cos?(a)

Puor = {z ceCN: |z¢| — Re(zke’Zi”‘) < o

,1§k§N}, (16)
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where 0 < ¢ < 1. Using (15) for the arbitrary z € Py r, Pa,o,r C Pr, we obtain for n > 1
1 2
(2] = Re(Qz(&;l)(z)e—m) < cos(a) Puer).
where the constant C(P,, ) depends only on the domain (16), i.e. the sequence {g,(z)} is
uniformly bounded in Py s .

Let C be an arbitrary compact subset of P,. Let us cover K with domains of form (16).
From this cover we choose the finite subcover Py, ¢,r, Payosrr ---» Payopr- We set C(K) =
max;<j<k C(Pa;0,r). Then for arbitrary z € K we obtain |gx(z)| < C(K), forn > 1, ie. the
sequence {g,(z)} is uniformly bounded on each compact subset of the domain (14).

Let £, = {z eRN: 0<z < ﬁ, 1<k< N} . Then from (13) for the arbitrary z € £,,
L, C P,, we obtain

m < 4ik_1’ l(k) € Ik, k> 1.

It follows from Theorem 2 [4], with Si(k) = 1/2,i(k) € Iy, k > 1, that (2) converges in £,. Hence
by Theorem 24.2 [10, pp. 108-109] (see also Theorem 2.17 [3, p. 66]), the multidimensional S-
fraction with independent variables (2) converges uniformly on compact subsets of P, to a

holomorphic function. O

Finally, the following theorem can be proved in much the same way as Theorem 4 using
Theorem 5 [4].

Theorem 5. A multidimensional S-fraction with independent variables (2), where the c;(y),
i(k) € I, k > 1, satisty the conditions c;) < r, i(k) € Iy, k > 1, where is a positive number,
converges to a function holomorphic in the domain

N
D, = U {z ecN: Y <|zk| - Re(zke_zm)> < coszzr(oc) } :

ae(—m/2,71/2) k=1
The convergence is uniform on every compact subset of D;.

The following two corollaries are an immediate consequences of Theorems 2 and 4 respec-
tively.

Corollary 1. An S-fraction (3), where the ci, k > 2, satisfy the conditions ¢y < r, k > 2, where
r is a positive number, converges to a function holomorphic in the domain

1
Him = {ZEC. arg(z—%E)

for every constant M > 0. The convergence is uniform on every compact subset of H, 1.

<, |z| <M}

Corollary 2. An S-fraction
1 ciz ¢z c3z
1+ 1+1+1+
where the ¢y, k > 1, satisfy the conditions ¢, < r, k > 1, where r is a positive number,
converges to a function holomorphic in the domain
< 7'(} .

1
H,=4z€C: |arg | z+ —
= qrec o)
The convergence is uniform on every compact subset of H,.

We note that, in view of Theorem 1, we conclude that Corollaries 1 and 2 give us two new
convergence criteria for S-fractions.

4
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AOCAiAXyeTbCsT 301KHICTh 6araTOBUMipHIMX S-ApO6iB 3 HepiBHO3HAUHMMM 3MIHHMMY, SIKi € 6ara-
TOBMMIPHMM y3aTaAbHEeHHSIM S-ApobiB. Lli riansicTi AaHIIOTOBi Apo6u € epeKTMBHMM iIHCTPYMEHTOM
AT HaBAVDKeHHS (PYHKIIN, 3aAaHMX (POPMaABHMMIY KpaTHMMM CTETIEHeBUMY psiaaMit. AAsT BCTa-
HOBAEHHSI KPUTepiiB 361KHOCTi BUKOPUCTOBYETHCSI TeOpeMa MPO IMPOAOBXKEHHsI 3615KHOCTI i3 yXe
BiaOMOI MaAaoi obaacTi A0 6iAbIIOL. Y pe3yAbTaTi OKa3aHO, IIO MepeTHH MapaboAiuHol i KpyroBoi
obaacTeit € 06AaCTIO 301XKHOCTI 6araToBUMMipHOro S-Apoby 3 HepiBHOSHAUHMMM 3MiHHMMM, a Mapa-
boaiuHa 06AACTh € 06AACTIO 36IKHOCTI TIAASICTOTO AQHIIIOTOBOTO APOGY, SIKMIA € 0bepHeHUM A0 6a-
raTOBMMipHOTO S-Apoby 3 HepiBHO3HaUHMMM 3MiHHMMM. KpiM TOTO, OTpMMaHO ABa HOBMX KpUTepil
361KHOCTI AASI S-ApO6iB SIK HACAIAKY 3 BUIIIe 3raAaHUX pe3yAbTATiB.

Kntouosi cniosa i ppasu: 361XHICTh, piBHOMIpHA 361KHICTb, S-Api6, baraToBuMipHMiT S-Apib 3 He-
PiBHO3HAUHVIMI 3MiHHUMMA.
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BOUNDARY VALUE PROBLEM SOLUTION EXISTENCE FOR LINEAR
INTEGRO-DIFFERENTIAL EQUATIONS WITH MANY DELAYS

For the study of boundary value problems for delay differential equations, the contraction map-
ping principle and topological methods are used to obtain sufficient conditions for the existence of
a solution of differential equations with a constant delay. In this paper, the ideas of the contraction
mapping principle are used to obtain sufficient conditions for the existence of a solution of linear
boundary value problems for integro- differential equations with many variable delays.

Smoothness properties of the solutions of such equations are studied and the definition of the
boundary value problem solution is proposed. Properties of the variable delays are analyzed and
functional space is obtained in which the boundary value problem is equivalent to a special integral
equation. Sufficient, simple for practical verification coefficient conditions for the original equation
are found under which there exists a unique solution of the boundary value problem.

Key words and phrases: boundary value problems, integro-differential equations, delay, solution
existence.

Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
E-mail: i.cherevko@chnu.edu.ua (Cherevko.M.), uefa2012Qukr.net (Dorosh A.B.)

INTRODUCTION

Boundary value problems for differential and integro-differential equations with delay are
an important part of the modern theory of differential-functional equations. Analytical solu-
tions for such problems can only be found for the simplest types of equations, therefore the
problem of finding approximate solutions is relevant. At the same time, it is important to study
the solubility of boundary value problems with delay and properties of their solutions.

The study of the conditions for the existence of unique solutions of boundary value prob-
lems with delay using the contraction mapping principle was carried out in the papers [1, 5, 8].
Boundary value problems for differential and integro-differential equations of neutral type are
investigated in [2, 3, 7] with the use of topological methods. We also note the technique of a
numerical-analytic method for studying boundary value problems for differential-functional
equations in papers [9, 10]. In this paper, the coefficient conditions for the existence of a solu-
tion of the boundary value problem for linear integro-differential equations with many delays,
which are efficient for verification in practice, are investigated.
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1 PROBLEM STATEMENT

Let us consider the following boundary value problem

n

- (”z(x)y(x () + i)y (x — 1(x)

(1)
+2/Kz]xs (s — s ))ds)) +f(x),

y (x) = ¢V (x), j=0,1, x € [a%;a], y(b) =1, (2)
where 1 (x) = 0 and 7; (x), i = 1,7, are continuous nonnegative functions defined on [a, ],
¢ (x) is a continuously differentiable function given on [a*; 4], 2* = min { inf (x—17( },

0<i<n | x€[a;b]
v € R
Let a;(x), bj(x), i = 0,n, f(x) be continuous functions on [a;b] and Kjj (x,s),i = 0,7,

j = 0,1, be continuous functions of both arguments in the domain [a, b] x [a, b]
We introduce the sets of points determined by the delays 7; (x),..., T (x):

n
E={xelab: x—7(x)=0j=12..} E=JE
i=1

Let the delays 7; (x), i = 1, n, be such that the sets E;, i = 1,n are finite. We number the
points of the set E in ascending order. Also, we introduce the notations:

J=1[a%a], I=1a,b], [ =[a,x1], Lh=[x,x2), ..., It = [xk_1, %], Lxs1 =[x, D],

B(]ul){y(x):y(X)G (C(]UI)H(Cl(])Ucl ) <k01C2 ))

y ()| <Py, Jy'(x)] < Pz},

where Py, P, are positive constants. A function y = y (x) from the space B(J U I) is called a so-
lution of the problem (1)—(2) if it satisfies the equation (1) on [g; b] (with the possible exception
of the set E) and the boundary conditions (2).

2 SOLUTION EXISTENCE

It follows from the definition of the space B(J U I) that the solution of the problem (1)—(2)
is continuously differentiable for any x € [a, b], where i/’ (a) is the right derivative.
Let us introduce a norm in the space B(J U I):
/
x [y (x) \) } :

8 2
Iyl = max {2 max y (], 2 max (max Iy ()
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The space B(J U I) with this norm is a Banach space. The boundary value problem (1)—(2) is
equivalent to the following integral equation [5, 7]:

o~/

1
+ Y (K09 @ (@)d@)

( y(s—1(s)+bi(s)y (s —7i(s))

@N
||M:

3)
G(x,8)ds+1(x), xeJUl,

=l _ G(xls)/ xlsell . q)(x)’ xe]’
G(x,s)_{ 0, otherwise, l(x)_{vg—%a)(x—a)%—q)(a), x€el,

where G (x,s) is the Green function of the following boundary value problem y” (x) = 0,
x € I,y (a) =y (b) = 0. We define the operator T in the space B(J U I) in the following way

||
\w
{ng

(”z y(s—Ti(s)) +bi(s)y' (s — 7 (s))

)
1 b ,
+_Z(:J/Kij(sfé‘)y(])(C—Ti(ﬁ))dé‘ﬂ (x,s)ds+1(x), xeJUL
J=Ya
b n
(Ty)' (x) :/ [Z()(ai ($)y (s = (s) +bi(s)y (s =7 (s))
" ©)

+Y (K090 @ <¢>>dé>] G, (x,s)ds + 10wy

Let the coefficients in the equation (1) be such that the following inequalities are true
la;(x)] < A, |bi(x)] < B, |Kji(x,s)| < KZ], =0,nj7=01 |f(x)] <F x € [ab. We

n
denote P = Y} <A1-P1 + BiP, + (b —a) 2 Kl-]- f+1) + F, where Py, P, are the positive constans
i=0 j=0

which are included in the definition of space B(J U I).

Theorem 1. Let the following conditions hold:
2
1) max{max ¢ (9], 5P+ max(lg (@), [71) } <
X

}sz,

3)@ E <A + (b - )K‘o) + b—zﬂié)(Bi +(b— ﬂ)K‘l) <1

Then there exists a unique solution of the problem (1)-(2) in B (JU I).

2>max{mg;<rqo< V), bgep+ |15
X

Proof. Based on Green’s function
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we obtain the following estimates:

b
/’G(x,s)’ds < (b—

When the conditions 1)—2) and the inequalities (6) are true, the operator T maps the space
B(JUI) onto itself. Let y1,y2 € B (J U I). Considering the estimates (6), we get

b

)2
=

a

—a

(6)

G;(x,s)‘ds < b

b n
Ty () = ()| = | [ [2 (az-<s>(y1<s () — yals — Ti(5)))

i=0

+b(5) (¥4 (s = Ti(5)) — y(s — Ti(5)))

b
5/ Z(Ai yi(s — w(s)) _yZ(S_Tz(S))’ + Bily1(s — Ti(s)) —yg(s—n(s))‘
a* i=0
1 b _ _
+ 1 [ [ (5,)| v} ¢ —7(2) - (& - n(@)))dg)] Gl 9)|ds
JI=Ya
b n
Sﬂ[ z-;)(A gﬁ)yl—yZHBimaX{lggf Y1~ Ya|, max|yy —y; }
b
/ 10512]?8(’]/1 yz’d§+/1<z1 max{nslalx v — 5, na vl — b }dé‘)] ’G(x,s)‘ds

/b
—{—b_aimax max
2 b—a el

m.
el vl

y ]/2 ’
i=0
(b—a)> 8
g G el el - ) LR

b_aimax max‘
2 b—a el N yz

bo—0) ¥R

i=0

vl —h G(x,s)|ds
nax|y GGx9)

< (b_8a>2 [(b—Sa)z o 8 gﬁfl)yl y2)<2A +(b—a iKZ())

i=0
b—a 2 ! L
> mmax{malx‘y — 15!, ])y yz)}<§)3i+(b—a)§)1<i1>
b—a)?|(b—a)* & — b—a &
§||y1—yz||B( 8) [( 8) Z(Ai+(b—a)Ki0>+ 5 Z(Bi+(b—a)1<ﬂ>
i=0 i=0
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! / b—a (b—a)z n _
Ty}) (x) — (Tyh)(x — Ai+ (b —a)K;
(T () = (Tya) ()| < v = walls [ 2 g( +(b—a) 0)

o5 (b 0|

i=0

_|_

Based on the obtained estimates, we have

max |(Tyr) (x) — (Ty2) (x)|
< lly1 —v2ls (b_8a>2 [(b;”)zg)(Aﬂr(b— ) i( K11>
max{ max|(Ty})(x) ~ (Ty5) ()] max| (T3 ) () — (Ty3) ()|}
SHyl—yz”Bb;a[(bga)2i<z4i+(b ) b;i( Kl)

i=0 i=0

xel

We multiply the first inequality by - = ) —> and the second one on bl'

= | (Ty) () = (Tya) ()|

n

i( &0+b_az<&+w—wﬁd,

i=0

< ly1 —yzl\B[

2
2 max{max\(Tm( ) — (Tyh) () ,max)<Tya><x> - <Ty§><x>\}

x€]j
i( K0+b;ai<&+@—wﬁd.

i=0

< ly1 —yzl\B[

Given the resulting inequalities, we get

max{ﬁ max [(Ty2) (x) — (Ty2) ()],

xeJul

2 max{ max| (1) () — (1)),

xe]j

< ly1 =2l [(b _8”)2 ii(:)(Ai + (b ) Z ( Kﬂ)

From the definition of the norm in the space B(] U I) we have:

| (Ty) () = (Ty2) ()|

B

(b—a)? & )

SHyl_yZHB[ 3 Z(Ai+(b )

i=0

7 LA 0ok

The inequality (7) and the condition 3) imply that the operator T is a contraction in B(J U I)
and it has a single fixed point in this space [6], therefore the boundary value problem (1)—(2)
has a unique solution y(x) € B(J U I). The proof is complete. O




70

CHEREVKO I.M., DOROSH A.B.

Remark. An efficient algorithm for finding an approximate solution of the boundary value
problem (1)—(2) is the spline approximation method, using cubic splines with defect 2, which
is considered in the paper [4].
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Yepesko L.M., Aoporm A.B. IcHysanns poss’a3ky kpaiiosoi 3adaui drs niiliHux iHmeepo-ougeperyiano-
HUX piBHAHb i3 6azamema sanisHenHamu // Kapmarceki matem. my6a. — 2018. — T.10, Nel. — C. 65-70.

AAsI AOCAIAXKEHHSI KpalloBUX 3apad AASL AMdpepeHITiaAbHIX PiBHSIHD i3 3aIli3HEHHSIM 3aCTOCOBY-
IOThCSI METOAV CTUCAVIX BiAODpakeHb Ta TOIIOAOTIUHI METOAM AAST OAePIKAaHHSI AOCTaTHIX YMOB iCHY-
BaHHSI pO3B’sI3Ky AMdpepeHIiaAbHIX PiBHSIHD 3i CTAAUM 3alli3sHEHHSIM. Y A@Hill pobOTi BUKOpUCTO-
BYIOTBCSI iAel METOAY CTMCAMIX BiAOOpakeHb AAsI OAepKAaHHs AOCTAaTHIX YMOB iCHYBaHHSI PO3B’SI3KY
AHIVHMX KpalfoBUX 3aAa4 AASI iHTeTpo-AvidpepeHIiaAbHMX PiBHSIHD i3 6araTbMa 3MiHHMMM 3aTli3He-
HHSIMIA

AOCAIAXEHO BAACTUBOCTI TAAAKOCTI pO3B’SI3KiB TaKMX PiBHSIHb Ta 3alPOIOHOBAHO O3HAYUEHHSI
PO3B’sI3KY Kpariosoi 3apadi. [IpoanarizoBaHO BAACTMBOCTI 3MIiHHIX 3aITi3HeHb i 0AepkaHO PYHKITIO-
HaABHUIA POCTIpP, B IKOMY KpalioBa 3aAa4a eKBiBaA€HTHA CMIeiaAbHOMY iHTerPaAbHOMY PiBHSIHHIO.
3HalAeHO AeTrKi AAS IPaKTHYHOI MepeBipKy AoCTaTHI KoedpillieHTHI yMOBM Ha BUXiAHE PiBHSIHHS,
IIpY BUKOHAHHI SIKMX iCHY€ €AVHII PO3B’SI30K KpafoBOi 3aAadi.

Kntouosi croea i ppasu: xpaviosi 3apadi, iHTerpo-AvdpepeHIiaAbHi piBHSIHHS, 3alli3HeHHSs, icHyBa-
HHSI PO3B’SI3KY.
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FERAHTIA N.1, ALLAOUI S.E.2
A GENERALIZATION OF A LOCALIZATION PROPERTY OF BESOV SPACES

The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he
has provided that the Besov spaces Bj ,(IR"), with s € R and p,q € [1, +oo] such that p # g, are
not localizable in the ¢ norm. Further, he has provided that the Besov spaces Bj , are embedded
into localized Besov spaces (Bj ) (e, By, < (B, ), for p > q). Also, he has provided that
the localized Besov spaces (Bj,;)¢» are embedded into the Besov spaces By, (i.e., (B} ;)¢ — Bj
for p < g). In particular, B;/p is localizable in the ¢7 norm, where /7 is the space of sequences
(ax)x such that ||(ax)|l¢» < co. In this paper, we generalize the Bourdaud theorem of a localization
property of Besov spaces B} ,(R") on the " space, where r € [1,+o0]. More precisely, we show
that any Besov space Bj , is embedded into the localized Besov space (B} ;) (ie., By, < (B ),
for r > max(p,q)). Also we show that any localized Besov space (B;,q) o is ernbedded into the
Besov space By, (i.e., (B} )¢ — B} 4, for r < min(p,q)). Finally, we show that the Lizorkin-Triebel
spaces Fj (IR"), where s € Rand p € [1,+00) and g € [1, +c0] are localizable in the ¢/ norm (i.e.,
F]zsz,q = (Fzsz,q)ép)-

Key words and phrases: Besov spaces, Lizorkin-Triebel spaces, localization property.
1 Laboratory of Pures and Applied Mathematics, Department of Mathematics, Mohamed Boudiaf University of Msila, P.O.
Box 166 Ichbilia, Msila 28000, Algeria

2 Department of Mathematics and Informatics, Laghouat University, Laghouat 03000, Algeria
E-mail: na.ferahtia@gmail.com (Ferahtia N.), shallaocui@yahoo.fr (AllaouiS.E.)

INTRODUCTION

Functional calculus is one of the basic theory in functional analysis [5]. It has enabled to
study function-analytic in topological (in particular, normed) spaces of functions. For instance,
several authors such as Peetre [7], Dahlberg [4], Marcus and Mizel [6] have studied functional
calculus in certain Sobolev and Besov spaces. In particular, Bourdaud [1, 2] have established a
way of functional calculus in localized Besov spaces. More precisely, in [1] he has proved the
following result.

Theorem 1. Letp,q € [1,+o],s € R, B} ; and (B}, ;) are respectively the Besov and localized

Besov spaces. Then

Pq)

(i) B, 4 — (B} q)w, forp > ¢,
(ii) (Byq)ew < B} 4 forp < g.
In particular, Bj , is localizable in the (P norm, where (P is the space of sequences (a ), such

1
that || (ar)ller = (EiZo lax|?)? < co.

YAK 517.98
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In this paper, we generalize this result by proving that it is valid for any ¢" space, where
r € [1,+o0]. This paper is organized as follows. In section 1, we recall basic concepts of Besov
and Lizorkin-Triebel spaces, the decomposition of Littlewood-Paley, and some notations that
will be needed throughout this paper. In section 2, we give a generalization of Bourdaud
theorem of a localization property of Besov spaces on the ¢" space, where r € [1,+c0]. Also,
we show that the Lizorkin-Triebel spaces are localizable in the ¢/ norm. Finally, we present
some conclusions and discuss future research in section 3.

1 PRELIMINARIES AND NOTATIONS

This section contains the basic definitions and notations that will be needed throughout
this paper.

1.1 Notations

We note (ey, ..., e,) the canonical basis of R", x.y = x1y1 + - - - + X,y the scalar product in
R”, and fora € N", |a| = a1 + -+ + ay, a”‘lxl?‘f% the partial derivative of the function f is
denoted by 0* f.

If f: R" — C, the support of f denoted by suppf. D(IR") is the space of test functions,
i.e. of smooth functions which have compact support, D’'(R") is the dual of D(R") . S(R")
is the Schwartz space of functions C*®(R") rapidly decreasing on R”, the dual S'(R") is the
space of tempered distributions.

If f € S(R"), then it Fourier transform defined by

FUF)@) = [ exp(—ivd) f(x)dx

and its inverse Fourier transform defined by

FAF@) = o) [ explixd) @)z

Let A; and A; be two spaces, we say that A; — Aj if there exists ¢ > 0 such that
-la, < cll-||la,- Let p’ be the conjugate exponent of p, % + % = 1 where p € [1, +c0].

Let k € Z"; 1 is the translation operator defined by 7 f(-) = f(- —k); L? is the space of the
measurable functions f such that || f||.r = ( fIR" |f(x)|? dx)% < o00; (1 is the space of sequences

1
(ax)x such that [|(ax) |l = (T2 |ax]7)7 < oo.
Let0 < p <o0,0< g < o0,50

o0

kaHM(LP) = (Z ka(x)HZ) < 00, kaHLP(M) = H(i \fk(x)’q)%”p < 0.

k=0 k=0

==

1.2 The decomposition of Littlewood-Paley
Let ¢ € S(R"), which satisfy the conditions:

(i) suppp C { € R": 1< 8| <3},
(i) ¢() >0, for1 < [¢] <3,

(ii)) Tjez ¢(277¢) =1, for § € R"\ {0}.
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The construction of ¢ does not pose any difficulty, see for example [3] . We put ¢({) = 1 —
it @(277%), then it follows that the function ¢ € C®(R"), such that supp ¢ C {¢ € R" :
|¢| < 3}. In the following, we fix the partition of the unit and we obtain:

¢(C) + Z}"’:l(p(2’j§) =1 (forall¢ € R").
To this partition we associate a sequence of convolution operators A; : S’ — C*, defined by
f(A]f)(ﬁ) = g0(2_j§)f(§), forj = 1,2,... and F(Aof)(&) = @(&)f(E). Also, we define the

operators Qi by F(Qif) (&) = 9(27%¢)F (&), k =1,2,...,forall f € &, the decomposition of f
of the Littlewood-Paley type given by

f=Y0f (1)

j=0
The series (1) converges in the sense of tempered distributions. The series (1) can be written as
f=Qf+ Y A,
j>k+1

This formula is valid for any f € S’ and k € IN, such that Qi f = YJ;<x A f.

Definition 1 ([10]). Let f € 8" and a > 0. We define the maximal operators associated to the
Ay and Qi by
. Af(x —y)| + |Qkf(x — )|
A f(x) = sup [Af(x = y)| and Q;"f(x) = sup ————3-.
k yeR” (1 + Zk‘y‘)a : yeR” (1 + Zk‘y‘)a
Definition 2 ([8]). Lets € R,p,q € [1,+co]. The Besov space By, (IR") is the set of all f €
S'(R") satisfying
. 1
~0(257]|A; 7)1 < +oo0, for o,
Hf”Bf,,q(IR”) — (2]20( S” ]f”P) ) q 7& (2)
sup (2 |Aif ) < +eo, for g = co.
Definition 3 ([8]). Lets € R, p € [1, +oo[ and q € [1, +oo]. The Lizorkin-Triebel space F, ,(R")
isthe setof all f € S'(R") satisfying

: 1
_ =0 @7[A )Nl < oo, for q # co. 3
£ 1lEs,, () = SiiAs 3)
Isup;=o(27]Ajf[)llp < +oo, for q = co.

Remark 1. In the formula (2) (resp. (3)), we can replace A; by A;"” with a > % (resp. a >

m), and we obtain an equivalent norm in Bj ,(IR") (resp. F; ,(R")).
For more details, see Peetre [7] and Triebel [10] .
Proposition 1 ([2]). Lets € R.

(i) For all v > 1 there exists c > 0 such that for any sequence of functions (f;);>o, where
supp Ffj C{G: 712 < [¢| < 72/}, we have

I Z(:)fjHB;,q < C(;)Zsjq|’ﬁl|p)q-
]: ]:

(i) For alla > 1 there exists c > 0 such that for any sequence of functions (f;);jcn, where
supp Ffj C {¢:a12 < || < a2}, we have

[eS) Ie9) ) 1
1Y filles, < ell(3 279 £1T) 71l p-
j=0

j=0
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2 LOCALIZATION OF BESOV SPACES

In this section, we give a generalization of Bourdaud theorem of a localization property
of Besov spaces on the ¢" space, where r € [1,+0c0]. Also, we show that the Lizorkin-Triebel
spaces are localizable in the /¥ norm. We start with these important concepts.

Let E be a Banach space of distributions. We associate on the space E the following hypoth-
esis.

1) Translation invariance; if we denote T, the operator given by 7, f(t) = f(x — t), then 7y is
an isometric of E;

2) Localization invariance; for all f € E and ¢ € D(IR"), we have that ¢f € E.

Let ¢ € D(IR"). The notion of localized is defined by fx = T,¢ - f, it follows immediately from
the hypothesis 1) and 2) that the family (fx)rern is bounded in E. We consider the set A as the
class of all the functions ¢ € D(IR") satisfying

Y ¢p(x—k)=1 forallx € R".
kezn

Definition 4 ([1]). Let E be a Banach space of distributions, E is localizable in the (¥ norm
(1 < p < o), if there exist ¢ € A and a constant ¢ > 1, such that

cMAle < (Y lueflIE)

kez"

<=

<c|flle

i.e. E = (E)y», we denote by (E)» the distribution space of u such that

Il ey, = lwp-ullkeznller < oo

Proposition 2 ([1]). Let S be the Schwartz space, if the function @ € S is not null on the support
of ¢, then we have

lll ey, ~ [[ClT0-ul|E)kez [l er-

Proposition 3 ([1]). Let B;,q be a Besov space, and N be a natural number fulfill N > s, and
A, u € S, such that

(i) p(g) # 0, for |¢] <3,
(i) A(€) #0, for1 < |¢] <3 and A(*)(0) = 0 for |a| < N.

We denote by L;(j > 1) the respective symbol operators A(27/¢) and by Ly the symbol operator
1(&), therefore

loellg,, ~ 15 ILjullp)jenlen-

In the following theorem we give a generalization of Bourdaud theorem of a localization
property of Besov spaces on the ¢ spaces, by using Proposition 2 and Proposition 3.

Theorem 2. Letp,q,r € [1,+o0|, s € R, and B}, and (B}, ;) are respectively the Besov and
localized Besov spaces. Then

(i) B, 4 — (B} )¢ forr > max(p,q),
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(i) (B},q)er — B}, forr < min(p, q).
In particular, B, , space is localizable in the (P norm.

Proof. (i) We will show that
H””(B;,,q)ﬂ < CH”HB;W for ¢ > 0.

By Proposition 1, it follows that

: 1
H ZTkG.AJ-uHB;’q < C(Z 2S]qHTk9~Aj””Z>q-
=0 =0

This implies that, ||7.60.u]* s S (52 257 ||Tk6.A]-u||Z) 7. Then it holds that

j

1 2 i ro1
(X Imully )7 < el Y (3 29| mo.apu})7).
kezr ' kezn j=0

Consequently

1 .
(X lmbullps )7 < (7 wb-Ajullp)keznller(er))-
kezn

Since, r > max(p, q) implies that g4 < r. Then from Minkowski inequality we have

127 |58 A1l p)kezn ooy < cll (27 |10 Ajullpkeznlloa r)-

So, we can see that the inequality (4) becomes as follows

1 .
(X lmbullps )7 < (7 wb-Ajullp)kezn llaer))-
kezn"

1 1) i 7.1
Consequently (Y ez HTkQ.qu;q)r < o(Xi20 279 (Lkezn || web-Bjul|},) 7 ) 7. Therefore,

==

1 2 i
(X lbull )F < c(X 27( w08l u)) )7
kezn" j=0

75

(4)

(5)

Also, we have ¥ > max(p,q) implies that p < r, i.e. ¢ — (', it follows that ¢/(LF) —
¢'(LF). Consequently ||(ti0.Aju)kezn|leriry < cll (Tk0.8ju)kezn || p(1r)- So, we can see that the

inequality (5) becomes as follows () jczn ”Tke-”HE;q)% < (Lo 2qu(HTkQ.Aju”gp(Lp))q)%. Since

L? is a space localizable in the /7 norm, then it holds that || 0.4 ul[p(1py « [|Ajulp. Hence,

1 2 i 1
(Y Ilmullps )7 < () 29| Amulp) < cllullg;,,-
kezr j=0

Thus, B}, = (Bjq)er
(ii) Now, we will show that

||”||B;Iq < CH”H(B;,,)N for ¢ > 0.
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Let u € S'(R"). Then it holds that
L)y = 1LY w)lly =1 Y. Li(mpu)lly < c( Y ILi(mpu)l}p)
kezZn kezZn kezZn

Since r < min(p, g), it holds that ¢" — (7, i.e.

1L (Tep-)llp)kezr e < el (ILj (1) |p)kez |-

So, we have
1 1
ILi)llp <c( Y. IILj(meu)l[p)? <c( Y ILj(wp-u)ll},)r
kezn kezZ"

This implies that

==

1
ZzSMHLuH 1<c Zzw Y ILi(mgan)lly)7)e.

=0 kezZn

Consequently

o ) 1 .
(2 Lyullp)r < e(l@NILj(teg-u)llp)kezn lleaery)-
=0
Since r < min(p, g), it holds that r < g. Then from Minkowski inequality we have

12 NILj(teg-) | p)kez leaery < el 1L (1) | p)kezn |l er eny-

So, we can see that the inequality (6) becomes as follows
" osid Lol < 281||L:
(3 2MILjullp)7 < c(lVNILj (1) | p)keznllergen)):
o

Consequently

o . 1 r
(Y 2°M|[Ljul|f)7 <e( ) Z2SMHL () |51 < (Y I Tp-ulls, ) < cllullss,),
i

kezZ® j=0 kezn

Thus, (B;

S
pa)er = By

==

(6)

0

Remark 2. The generalization of Bourdaud Theorem given by Sickel and Smirnov in 1999
[9] using the wavelet method, the aim of this work is to generalize the same Theorem of a

localization property by using a different method.

Theorem 3. Letp € [1,+00),q € [1,+o0],s € R, F; ; and (F} ;)¢ are respectively the Lizorkin-

7T PA

Triebel and localized Lizorkin-Triebel spaces. Then the space F, , is localizable in the (¥ norm,

ie Fy, = (F5)m

Proof. (i) (Pf;lq) w <= F, 5. We will show that

1 flleg,, < cllfll,),, for c>0.
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From Definition 3, [|f||r;, = [|(Z O25]‘7|A]f|‘7) |p- We put Ajf = Yyczn T@-Ajf, it follows
that 5, — (50(r e 29 g 1)1)} - Consequently
11, = 1127 (mpAifkeze g llp-

Since, 1 < g. Then from Minkowski inequality we have
£ 1lEs,, = 127 (T ez leageny lp < 127 (wep i frezn o on) |l
Consequently

1
IfllEs, <cll ) 225”|Tk§0A]f|" My < e X I ZZSWIMDAJI") I5)7

kezZn j=0 kezn =0

1
Hence, ||fr;, < c(Ckez I Tke-fll3s )7~ Thus, (Fj e — Fy g

(i) Fj 5 = (F;,q) - Now, we will show that

Hf”(l—";/q)[p < CHpr;/q for ¢ > 0.
Let p,q € [1, +00] and s € R. Then it holds that
1

Z HTk(Pf”FS = Z ”Tk(PZA]pr;q )P = Z ”ZAka(P”FS )P

keZ” keZ” keZ” j=0

'vab—‘
—

From Proposition 1, it follows that

1 ; 1 1
(L lmepfllgs ) < e} I ZZS]"\AjkafPW)"I\;’i)P

keZ” keZ” j=0
1
< () [l ZZSM\AJW H )b
keZ"

Since L7 is a space localizable in the ¢¥ norm, then it holds that

1

(L I flE )7 < ZWUAJW Hp<CHprs

keZ"

Thus, F; , <= (F}4)er- O

3 CONCLUSION

In this work, we have generalized the Bourdaud theorem of a lacalization property of Besov
spaces B;,q (R") on the ¢" space, where s € R, p,q,7 € [1,+00]. Also, we have provided that
the Lizorkin-Triebel spaces are localizable in the ¢/ norm. In future work, we will investigate
the localization property on other functional spaces.
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ITonsaTTs AoxaaisaliiHOI BAACTMBOCTI mpocTopis becosa BBeaene I'. Bypao, BiH moxasas, 110
npocropu becosa By, ,(R"), ae s € Rip,q € [1,+o0] Taki, mo p # ¢, € HeAOKaAi30BHMMY Y HOP-
mi (. Taxox BiH moxasas, o npocropu becosa B} ; BxraaeHi B AokanizoBaHi mpocropu becosa
(Bq) e (T506T0 B}, — (.B;’q) p OPU P > q). T?KO)K 6yro HSOKa3aHO, U.ISO AOKaAi30BaHI IpOCTOPU
Becosa (BM).U; BKAAACHI B MPOCTOPH Becosa .BM (T0§To (Byq)er — B mpup < g). 3okpema
B}, € rokanisosrum B Hopmi (7, ae (¥ mpoctip mocaiaoBHOCTel (g )y Taxux, mo [|(ax)|[pp < oo
Y miif cTaTTi MM y3araAbHMAM TeopeMy Bypao mpo AokaaizamliliHy BaacTuBicTh mpocTopis becosa
B, ,(IR") Ha mpoctip £", ae r € [1,+00]. A Touniie My A0BeAw, o 6y Ab-sikuit mpoctip Becosa B} ,
€ BKAQAEHIIA B AOKAAI30BaHIIA IIPOCTIp BecQBa (B}q)er (T06.T0 B < (Byq)e mpur = max(p,q).).
Taxox My noxasan, o 6yAb-sIKuit AoKarizoBaHwit mpoctip becosa (Bj, ) - BKAaAeHMit B IpOCTip
Becosa B;q (T.O6TO (B;q) ¢r > By ympur < m.in( p.q)). 1 a 3aBepIIIeHHs byro TIOKA3AHO, IO MpO-
cropu Aisopkina-Tpibeas F;,(R"), aes € Rip,q € [1,+00] e roxarisosrumu B HopMi (¥ (TobTO
Eoq = (Fpqer)-

Kntouosi cnosa i ppasu: mpoctopm becosa, mpocropm Aizopkina-Tpibenasi, AokanisariliHa BAaCTH-
BiCTb.
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(L)

FILEvYCH P.V., HRYBEL O.B.
THE GROWTH OF THE MAXIMAL TERM OF DIRICHLET SERIES

Let A be the class of nonnegative sequences (A,) increasing to +00, A € (—o0, +00|, L4 be the
class of continuous functions increasing to 4o on a half-closed interval of the form [Ag, A), and
F(s) = ¥ a,e*™ be a Dirichlet series such that its maximum term (o, F) = max, |a,|e"*" is defined
for every o € (—oo, A). Itis proved that for all functions @ € L and f € L4 the equality

* . 0((1];1)
Prp(F) = max lim
“p (gn)eAN—® ‘B (;7\_: + )\Ln In ﬁ)

holds, where p; 5(P ) is the generalized &, B-order of the function Iny(c, F), i.e. p; 5(13 ) = 0if the
function (o, F) is bounded on (—o0, A), and PZ,/S(F) = limyy 4 a(Inp(c, F))/B(c) if the function
#(o, F) is unbounded on (—oo, A).

Key words and phrases: Dirichlet series, maximal term, central index, generalized order.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: p.v.filevych@gmail.com (FilevychPV.), olha.hrybel@gmail.com (Hrybel O.B.)

1 INTRODUCTION

We denote by INj the class of nonnegative integer numbers, and let A be the class of non-
negative increasing sequences A = (A;),cnN, tending to +co.
Let A € A. We consider a Dirichlet series of the form

F(s) = Z a,e, s =0 +it, (1)
n=0
and set
o(F) = Tm —In—,  E(F) = {o € R: |an|e™™ = o(1), 1 — oo}
n—co A, ‘an’

It is easy to see that

U*(F):{—oo, %f E(F) = @;
supE(F), if E(F) # @.

If 0*(F) > —oo, then for all ¢ € (—o0;0*(F)) we define the maximal term and central index of
the series F respectively by

(o, F) = max{|a,|e™ : n € Ng}, v(o, F) = max{n € Ny : |a,|e” = u(c, F)}.

YAK 517.53
2010 Mathematics Subject Classification: 30B50, 30D10, 30D15, 30D20.
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Let A € (—o0, 400, and & : D, — R be a real function. We say that « € L4 if two following
conditions are fulfilled: (i) the domain D, of « is a half-closed interval of the form [Ag, A); (ii)
the function « is continuous and increasing to +co on D,. If &« € L4 and A < x < 400, then
we assume that a(x) = +oo.

For a given A € (—o0,+o0] and A € A we denote by D% (A) the class of Dirichlet series of
the form (1) such that ¢*(F) > A and put D = UjcaD3(A).

Leta € Lo, B € Ly and F € D7. If the function p(c, F) is bounded on (—co, A), we set
p;,ﬁ(F) = 0; if the function y(c, F) is unbounded on (—co, A), we put

Let p be a positive constant. Under some conditions on functions «, 8 € L, Sheremeta
[1] proved that

pip(F) = Jim, A
B(3+4mnga)
for every Dirichlet series F € D7 , of the form (1). Note that without additional conditions on
functions &, B € Lt formula (1) is false in general (see e.g. [2, 3]).
The following theorem indicates a formula for calculating PZ,;S(F ) in the case of arbitrary
A€ (—oo,+), 0 € Lieo, p € Ly, and F € D3

(2)

Theorem 1. Let A € (—o00,+0], & € Lo, B € La. Then for every Dirichlet series F € D7 of
the form (1) we have

] o & (1)
F) = max lim .
sz,ﬂ( ) neA nﬁwﬁ(%"{')\iﬂlni)

[an

It can easily be shown that Theorem 1 is equivalent to the following theorem.
Theorem 2. Let A € (—00,+0], & € Ly, B € Ls. Then for every Dirichlet series F € D of
the form (1) we have
o 5(F) = Tim sup —— 1)

n— o0 x 1 1)
XEDy ‘B (A_n + Ell’lw)

2 PROOF OF THEOREM 1

(1)
B+ L)
Consider a Dirichlet series F € D* of the form (1) and prove that k() < Pz,ﬁ(F ). If
Py p(F) = oo it is trivial. Assume that pj 5(F) < +oo, and let p > py ;(F) be a constant.
Then

For a sequence 7 € A set k(17) = lim;, oo

Inp(e) <a=H(pp(c)), o €[00, A).
Hence, for every n € Ny we have In|a,| < a='(0B(c)) — Ayo, 0o € [0p, A). Therefore, using
the notation ¢, = ,[3_1 (%(x(qn)) for all n > ny we obtain

In [an] < & (0B(0n)) — A = tju — Anp " (j;a(w)) ,
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and this can also be written as

> a(1n) . on >
p(k+4ngy)

This yields the inequality k(17) < p. Since p > pj 5(F) is an arbitrary, we obtain k(1) < pj 5(F).

It remains to show that there exists a sequence 7 € A such that k() > p; (F ). If

Pz,ﬁ(F) =0, then k(y) > PZZ,/s(F> for every sequence 17 € A as is proved above. Let sz,ﬁ( ) >0,

and (px)ken, be a positive sequence that increase to PZ,;;(F ). Then it follows from the defi-

nition of p ;(F) that there exists a sequence (0 )ken, increasing to A such that the sequence
(v(ox, F))ken, is also increasing and

a(Inp(ox)) = peB(ok), k€ No.
Let ny = v(oy, F), k € Np. Consider a sequence 77 € A such that 17,, = a~(0xB(0%)), k > ko.
Then for every k > ko we have

_ 1
In |a”k| + An B ! (E{“(W”k)) =In |‘1ﬂk| + An 0y = lny(ak) (Pkﬁ(‘fk)) = Mng-

This yields p; <

for all sufficiently large k.
n
ﬁ(ﬁ+ﬁ In \aik\ )

Therefore, k(1) > limg_,c px = pj, g(F). Theorem 1 is proved.
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®inesnu I1B., I'pubers O.B. 3pocmarng makcumanoroeo uneHa padie Aipixae // Kapnarcexi MaTem.
my6a. — 2018. — T.10, Nel. — C. 79-81.

Hexait A — KAac HeBiA'€éMHMX 3pOCTaoumX A0 400 mocaiaoBHOCTEN (Ay), A € (—00, 4+00], L4 —
KAAaC HellepepBHMX 3POCTAIOUMX A0 +00 (PYHKIIN, 3aAaHMX Ha HaIBBIAKPUTOMY iHTepBaAi BUTAS-
Ay [Ag, A), a F(s) = Y a,e™ — psa Aipixae Takuit, 1m0 7HOT0 MakcUMaAbHWIA uneH p(0, F) =
maxy |a,|e” An ¢ BUSHAYEHMM AASI BCIX 0 € (=00, A). Bpo60Ti AOBEAEHO, IO AASI AOBIABHMX (PYHKLIIi
& € L1 ip € L, npaBuabHa piBHICTD

Pup(F) = max lim ,
/) ) EN N0 77;1 1

() eAn=e g ( In 1)
ae py 5(F) — ysararsrermit a, f-nopsiaok dpymxuii In (0, F), To6To p} 5(F) = 0, sximo dpymxuis
(o, F) obMexena Ha (—o0, A), i PZ,/S(F) = limy44 a(In (o, F))/B(0), siximo dynkuist p(c, F) Heo-
fmexeHa Ha (—oo, A).

Kontouosi cnoea i ppasu: psia Aipixae, MaKCMMaABHIIM UA€H, IEHTPAAbHMI iIHAEKC, y3araAbHEeHMI
TIOPSIAOK.
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WICK CALCULUS ON SPACES OF REGULAR GENERALIZED FUNCTIONS OF LEVY
WHITE NOISE ANALYSIS

Many objects of the Gaussian white noise analysis (spaces of test and generalized functions,
stochastic integrals and derivatives, etc.) can be constructed and studied in terms of so-called chaotic
decompositions, based on a chaotic representation property (CRP): roughly speaking, any square inte-
grable with respect to the Gaussian measure random variable can be decomposed in a series of It6’s
stochastic integrals from nonrandom functions. In the Lévy analysis there is no the CRP (except the
Gaussian and Poissonian particular cases). Nevertheless, there are different generalizations of this
property. Using these generalizations, one can construct different spaces of test and generalized
functions. And in any case it is necessary to introduce a natural product on spaces of generalized
functions, and to study related topics. This product is called a Wick product, as in the Gaussian
analysis.

The construction of the Wick product in the Lévy analysis depends, in particular, on the selected
generalization of the CRP. In this paper we deal with Lytvynov’s generalization of the CRP and with
the corresponding spaces of regular generalized functions. The goal of the paper is to introduce and
to study the Wick product on these spaces, and to consider some related topics (Wick versions of
holomorphic functions, interconnection of the Wick calculus with operators of stochastic differen-
tiation). Main results of the paper consist in study of properties of the Wick product and of the
Wick versions of holomorphic functions. In particular, we proved that an operator of stochastic
differentiation is a differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

Key words and phrases: Lévy process, stochastic differentiation, Wick product.
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INTRODUCTION

Due to development of physics and mathematics (in particular, of the quantum field the-
ory, of the mathematical physics, of the theory of random processes) there is a need to develop
a theory of test and generalized functions of infinitely many variables. There are different
approaches to building of such a theory. Correspondingly, different spaces of test and general-
ized functions are the object of study. One of the most successful approaches consists in build-
ing of the just now mentioned spaces in such a way that the natural pairing between test and
generalized functions is generated by integration with respect to some probability measure on
a dual nuclear space (in particular, on a dual Schwartz space). First it was the standard Gaus-
sian measure (the measure of a Gaussian white noise), the corresponding theory is called the
Gaussian white noise analysis (see, e.g., [10,21]); then it were realized numerous generalizations.
In particular, important for applications results can be obtained if as the above-mentioned
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measure one uses a so-called Lévy white noise measure (e.g., [4,5]), the corresponding theory is
called the Lévy white noise analysis.

An important role in the Gaussian analysis belongs to a so-called chaotic representation prop-
erty (CRP): roughly speaking, any square integrable with respect to the Gaussian measure
random variable can be decomposed in a series of Itd’s stochastic integrals from nonrandom
functions. In particular, the CRP can be used in order to construct the extended Skorohod
stochastic integral [13,27] and the Hida stochastic derivative [10].

Unfortunately, in the Lévy analysis there is no the CRP [29] (except Gaussian and Poisso-
nian particular cases). Nevertheless, there are different approaches to a generalization of this
property: It6’s approach [12], Nualart-Schoutens” approach [24,25], Lytvynov’s approach [23],
Oksendal’s approach [4,5], etc. The interconnections between these generalizations of the CRP
are described in, in particular, [1,4,5,17,23,28,30].

One can use different generalizations of the CRP and construct different spaces of test and
generalized functions in the Lévy analysis, depending on the purpose of the research. And in
any case, for solving of some problems, or even simply for the completeness of the theory, it
is necessary to introduce a natural product on spaces of generalized functions, and to study
related topics. In the classical Gaussian analysis such a product, known as a Wick product, can
be introduced with use of symmetric tensor products of kernels from natural decompositions
of generalized functions (e.g., [22]). But in a general Lévy analysis the situation is more com-
plicated: now the construction of a product on spaces of generalized functions appreciably
depends on the construction of the just now mentioned spaces that, by-turn, depends, in par-
ticular, on the selected generalization of the CRP. For example, elements of the Lévy analysis
in terms of Oksendal’s generalization of the CRP and, in particular, the corresponding Wick
product and related topics, are considered in [4,5].

In this paper we deal with so-called regular parametrized Kondratiev-type spaces of gen-
eralized functions of the Lévy white noise analysis [16], which are constructed with use of
Lytvynov’s generalization of the CRP. The goal of the paper is to introduce and to study a
natural product (a Wick product) on these spaces, and to consider some related topics (Wick
versions of holomorphic functions, stochastic equations with Wick type nonlinearities, inter-
connection of the Wick calculus with operators of stochastic differentiation). Main results of
the paper consist in study of properties of the Wick product and of the Wick versions of holo-
morphic functions. In particular, we proved that an operator of stochastic differentiation is a
differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

Note that, as distinguished from the Gaussian case, now the symmetric tensor product of
kernels from natural decompositions of generalized functions is indeterminated, therefore we
introduce an applicable generalization of this product, by analogy with a so-called Gamma
white noise analysis [15] and a more general Meixner white noise analysis [14].

The paper is organized in the following manner. In the first section we recall necessary
notions, definitions and statements. Namely, we introduce a Lévy process L and convenient
for our considerations probability space connected with L; describe in detail Lytvynov’s gen-
eralization of the CRP; consider a regular parametrized rigging of (L?), and the stochastic
integrals, derivatives, and operators of stochastic differentiation on the spaces that belong to
this rigging. The second section is devoted to the Wick calculus: in the first subsection we
introduce and study the Wick product and the Wick versions of holomorphic functions on the
spaces of regular generalized functions; in the second subsection we study an interconnection
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between the Wick calculus and the operator of stochastic differentiation.

1 PRELIMINARIES

In this paper we accept on default that signs || - || or | - |y denote the norm in a space H;
a sign (-, -)g denotes the scalar product in H; signs (-, -)i or ((-,-)) g denote the dual pairing
generated by the scalar product in H.

1.1 Lévy processes

Set Ry := [0,+c0). Consider a real-valued locally square integrable Lévy process L =
(Lt)ter, (i-e. a random process on R, with stationary independent increments and such that
Ly = 0) without Gaussian part and drift. As is known (e.g., [5]), the characteristic function of
Lis

E[e"] = exp {t /]R(eigx -1- iex)v(dx)]. (1)

Here v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B denotes
the Borel o-algebra; E denotes the expectation. We assume that v is a Radon measure whose
support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/ 2y (dx) < oo,
R

and

/ xv(dx) = 1. (2)
R

Let us define the measure of the white noise of L. By D denote the set of all real-valued
infinite-differentiable functions on IR, with compact supports. As is known, D can be en-
dowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]). Let
D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D denote w(¢) by
(w, ¢); note that one can understand (-, -) as the dual pairing generated by the scalar product
in the space L?(R; ) of (classes of) square integrable with respect to the Lebesgue measure
real-valued functions on R (e.g., [3]). The notation (-, -) will be preserved for dual pairings
in tensor powers of riggings of L?(IR..) and in tensor powers of complexifications of such rig-

gings.

Definition 1. A probability measure yu on (D',C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

i{w,p) = ip(u)x _ 1 _
/D’e p(dw) = exp [/]lz+x]1?(e 1—ip(u)x) duv(dx)], peD, 3)

is called the measure of a Lévy white noise.

The existence of u follows from the Bochner-Minlos theorem (e.g., [11]), this proved in
[23]. Below we assume that the o-algebra C(D’) is completed with respect to y, i.e. we take the
completion of C(D’) and preserve for this completion the previous designation. So, now C(D’)
contains all subsets of all measurable sets O such that u(O) = 0.

Denote by (L?) := L*(D',C(D’),u) the space of (classes of) complex-valued square in-
tegrable with respect to u functions on D’. Let f € L?*(Ry) and a sequence (¢x € D)ren
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converge to f in L?(R.) as k — oo (as is well known (e.g., [3]), D is a dense set in L?(R)).
One can show [4,5,17,23] that (o, f) := (Lz) — limy (0, @k) (i-e. the limit in the topology of
the space (L?)) is well-defined as an element of (L?).

Denote by 14 the indicator of a set A. Set 19y = 0 and consider (o, 1j;)) € (L?),t € Ry.

It follows from (1) and (3) that <<o, Lo ter +) can be identified with a Lévy process on the
probability space (D', C(D’), jt) (see, e.g., [4,5]). So, one can write L; = (o, 1o ;) € (L?).

1.2 Lytvynov’s generalization of the CRP

Denote by & a symmetric tensor product, by a subscript C—complexifications of spaces.
Set Z. := N U{0}. Denote by P the set of complex-valued polynomials on D’ that consists of
zero and elements of the form

Ny -
flw) =Y (0", fM), weD, Nyez,, fVepgn, f(N)+£0,
n=0

here Ny is called the power of a polynomial f; (w®0, fO)y .= £0) ¢ Dgo := C. The measure u
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [23]), therefore P is a dense set in (Lz) [26]. Denote by Py
the set of polynomials of power smaller or equal to 1, by P, the closure of P, in (L?). Let for
n € NP, :=P, ©P,_1 (the orthogonal difference in (L?)), Py := Py. It is clear that
(L2) = & P,
n=0

Let (") € Dg@”, n € Z... Denote by : (0®", f(")} : the orthogonal projection of a monomial
<o®”,f(”)> onto P,,. Let us define real (i.e. bilinear) scalar products (-, -)ext ON D®”, neZ4,by
setting for f(”),g(”) € Dg@”

1
(f(n)’g(n))ext = i o . <w®”,f(”)> . (w®”,g(”)> u(dw). 4)
This definition is well posed: it is clear that (-, - ).yt are quasiscalar products on Dg”, the fact
that these products are scalar follows from their explicit formula calculated in [23] (see formula
(6) below).
By | - |ext we denote the norms corresponding to scalar products (4), i.e.

|f(n) |€Xt = (f(n)r,m)ext

Denote by ngt) , n € Z,, the completions of Dg” with respect to the norms | - |oxt. For

F(") ¢ HE,ZZ define a Wick monomial : (0®", F()) def (L?) — limk_m:(o@”,fl((n)}:, where

Dg’” > fk(n) — F" as k — coin ngt) (the well-posedness of this definition can be proved

by the method of "mixed sequences”). Since, as is easy to see, for each n € Z, the set
{:(o®n, fMy:|f(0) € DZ"} is dense in P, F € (L?) if and only if there exists a unique se-

quence of kernels F(") ¢ 1 0 e Z.,such that

ext’

(o]

F=) (0% M) (5)

n=0
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(the series converges in (L?)) and

(9]

FIZz) = [ IF(@)u(dw) = EIFP = ¥ )R, < .
n=0

So, for F, G € (L?) the real scalar product has a form
(F,G)12) = /D F(@)G(w)p(dw) = E[FG] = Y nl(F",G").,
n=0

where F("), G ¢ ngt) are the kernels from decompositions (5) for F and G respectively. In

particular, for JAONS Hézt) and G e 7-[( ) n,mée Z,

ext ’
(: (", EM) s, : (o=, GIM):) ) = / Hw®", FY 2 (™™, Gy 1 (dew)
D/
—FE [: <o®n,1:(n)> : (0®M, G(m)> :} — (5n’mn!(1:(n)’ G(n))ext-

Also we note that in the space (L2) : (020, FO)): = (c®0 F(0)) = F(0) and : (o, FV)): = (o, F))
[23].

In what follows, we need an explicit formula for the scalar products (-, - )ext. Let us write out
this formula. Denote by || - ||, the norm in the space L?(IR,v) of (classes of) square integrable
with respect to the Lévy measure v (see (1)) real-valued functions on IR. Let

pn(x) :=x" 4+ anln,lx”*1 +tagax, ai€R, je{l,...,n—1}, neN,

be polynomials orthogonal in LZ(IR,V), i.e. for natural numbers n,m such that n # m,
Jg Pn(x)pm (x)v(dx) = 0. Then, as it follows from [23], for F("), G(") € %é”) neN,

xt’

(F(”),G(”))ext = (F("),G(”))H(m

ext

_ n! Ip1, v 251 171, [l 25¢
- ‘ Z 51!...Sk!< 111! ) < lk! )

k,l]‘,S]‘GN: ]:l,...,k, 11 >12>~~~>lk,

1151+"'+lk5k:n

(6)
X /]Riﬁmﬂk F(”)(ul,...,ul,...,usl,...,usl,...,usl+‘.‘+sk,.;.,u51+.,.+sk)
ll 11 lk
X G(")(ul,...,ul, o Uy, e Usyy e Us gy - ooy Uy epsy AU - - AUs 4y, -
ll 11 lk
In particular, forn =1
(FY, GW)ew = (FV,6), ) = 1} / (wdu = (FV, W) pg ) ()

(by (2) [|[p1]|? = [ ¥*v(dx) = 1); in the case n = 2 we have
(F?,GP) = (F?, = / (11, u2) G (uy, up)duyduy

2 2
n HP;HV/ FO(y, u)G(z)(u wydu = (F?,GP) 1o+ HP;HV/ F@ (u,u)G® (u, u)du,
R, R,

etc.
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Remark. Note that the explicit formula for scalar products in H gxz ,n € Z,calculated in [23],

differs from (6). But it is very easy to verify that actually these formulas differ by the record
form only.

Denote H := L?(Ry), then He = L?(IR.)c (in what follows, this notation will be used
very often). It follows from (7) that ’H( )

oxt = Hc; and, as is easily seen, for n € IN\{1} one

can identify 7—[®” with the proper subspace of Héxt) that consists of "vanishing on diagonals"
elements (roughly speaking, such that F(") (uy, ..., u,) = 0 if there existk,j € {1,...,n}: k # j,
but u; = u;). In this sense the space ’H( t) is an extension of H®” (this explains why we use the

subscript "ext" in our designations).
1.3 A regular rigging of (L?)

Denote Py := {f = ZnNio'< on fn)y., fn) ¢ D®” Ny € Z, } C (L?). Accept on default
B€[0,1],g€ Zinthecase € (0,1] and g € Z if ﬁ = 0. Define real (bzlmear) scalar products
(+,+)q,6 On Py by setting for

Ny Ng
Z 0", f11) =Y (%", 8" € Py
n=0 n=0
mm(Nf,Ng)
(f8)qp:= Y, (n)HP20m (£ gy .
n=0

It is easy to verify that the axioms of a scalar product are fulfilled. In particular, if (f, 7) p=0
then f = 0in (L?). In fact, (f,f)qp = ZNf (n')1+/32‘7”|f )|2,; = 0if and only if [f(M |2, =0
foreachn € {0,..., N}, so HfH%Lz) =y,. 0” F2, = 0.

Let || - ||4,5 be the norms corresponding to scalar products (-, -)g 8, i-e. ||fllg5 = v/ (f, f)a,p-

Denote by (Lz)g the completions of P with respect to these norms; and set
(L?)f = pr lim(Lz)g (the projective limit of spaces, i.e. (L?)f = ﬂ(Lz)g provided by the
q

q—+o0
projective limit topology, see, e.g., [2,3] for details).

Definition 2. The spaces (Lz)g and (L?)P are called parametrized Kondratiev-type spaces of
regular test functions.

As is easy to see, F € (Lz)f,3 if and only if F can be uniquely presented as series (5) (with
kernels F(") ¢ chlt)) that converges in (Lz)g , and
IFI3 5 = IFI2 50 = 30 (n)FP2P" | FPIZ, < oo, (8)

2ﬁ_
(L n=0

Further, it is clear that for F, G € (Lz)!3 the real scalar product has a form

i n!) 1+/3217n ),G(n))m,

where F("),G(") ¢ ngg are the kernels from decompositions (5) for F and G respectively.

Finally, F € (L?)P if and only if F can be uniquely presented in form (5) and series (8) converges
foreachq € Z.
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Proposition ( [16]). For any B € (0,1] and any q € Z, in the same way as for p = 0 and any
q € Z, the space (Lz)g is densely and continuously embedded into (L?).

Taking into account this result, we can consider a chain (a parametrized regular rigging of
(L?))
(127 2 (19)2) > (1%) > (17) > (1), ©)

where (L?)_ g and (L?)P = ind hmq—>+oo(L2> P (the inductive limit of spaces, i.e. (L?)7F =

U(LZ)_g provided by the inductive limit topology, see, e.g., [2,3] for details) are the spaces
q

dual of (Lz)g and (L?)P respectively.

Definition 3. The spaces (L?)_ g and (L?)~P are called parametrized Kondratiev-type spaces
of regular generalized functions.

The following statement from the definition of (Lz) P and the general duality theory fol-
lows.

—P

Proposition. 1) Any regular genera]jzed function F € (L?)_ g

can be uniquely presented as

formal series (5) (with kernels F") € ext ) that converges in (L?)_ g , and
IEI g = NN 2yp = 20 (P27 Gy < oo (10)

Vice versa, any formal series (5) such that series (10) converges, is a regular generalized func-
tion from (Lz)fl3 (i.e. now series (5) converges in (Lz)fﬁ).

2) ForF,G € (L2) P the real scalar product has a form
(F, i )P (F(n) Gm),.
n=0

where F"), G(") ¢ ’H( t) are the kernels from decompos1t1ons (5) for F and G respectively.
3) The dual pairing between F & (LZ) and f € (L )g that is generated by the scalar
product in (L?), has a form

—q

- i n!(p(n),f(n))ext,
n=0

where F"), f() ¢ 1") are the kernels from decompositions (5) for F and f respectively.

ext

4)F € (L?)~P ifand only if F can be uniquely presented in form (5) and norm (10) is finite
forsomeq € Z .

Note that the term "reqular generalized functions" is connected with the fact that the kernels
from decompositions (5) for elements of positive and negative spaces of chain (9) belong to the

(n)

same spaces H,,;-.
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1.4 Stochastic integration and differentiation

In this subsection it will be convenient to denote the spaces (L?) 5 , (L%) = (L*)} and (L?) :g
from chain (9) by (Lz)g ,B € [—1,1],q € Z. The norms in these spaces are given, obviously, by
formula (8) (cf. (8) and (10)).
Decomposition (5) for elements of (Lz)g defines an isometric isomorphism (a generalized
Wiener-Ito-Sigal isomorphism)
L: (L2)F = & (n)Poryy(l)

7
=0 ext

where @ (n!)1+ﬁ2‘7”7-[("t) is a weighted extended symmetric Fock space (cf. [20]): for F €

ex
n=0

(I12)f of form (5) IF = (FO,FM,..)) € %O(n!)lﬂfzq”%g,’j). Let 1 : He — Hc be the

identity operator. Then the operator I® 1 : (Lz)g @ He — ( & (n!)1+/32‘7”7-[$t)) ® He =

& (n!)1+/32‘1"(7-[£zz ® Hc) is an isometric isomorphism between the spaces (Lz)g ® Hc and

n=0
& (n!)1+/32‘1"(7-1$2 ® Hc). It is obvious that for arbitrary m € Z, and " e 7-[(”? ® Hc a

ex
n=0

vector (0,...,0, E™ o, .. .) belongs to ne:BO(n!)”ﬁZQ”(HgZZ ® Hc). Set

m

Ho®m By 1@ 1) (0,...,0,E™,0,..) € (12)f © He.

m

(”)>

It is clear that elements : (o®", F."/):, n € Z ., form orthogonal bases in the spaces (Lz)g ® He

in the sense that any F € (Lz)g ® Hc can be uniquely presented as

F(-)

Y (o® EMy:,  E e 1M @ (11)
n=0

ext
(the series converges in (Lz)g ® Hc), with

2 _ - N1+Bngn (n),2
HF||(L2)§®HC ngb(n.) 27"|F. |H222®HC < oo.

Let us describe the construction of an extended stochastic integral that is based on decom-
position (11) (a detailed presentation is given in [16,17]). Let F ¢ ngt) ® Hc, n € N. We
select a representative (a function) f.(”) ¢ F" such that

fé")(ul,...,un) = 0if forsomek € {1,...,n} u = uy. (12)

Accept on default A € B(R;) (we remind that B denotes the Borel c-algebra). Let fé”) be

g;’f 1) as the

generated by j?én) (i.e. fgn) eF y)). It is proved in [16, 17] that this
definition is well-posed (in particular, F| in) does not depend on a choice of a representative

f‘(") c g satisfying (12)) and \fy)\ext < ’F‘(n)lA(‘)’%(Q@HC = ’F‘(n)’%(”,)@?ic'

the symmetrization of a function f.(”)l A(-) by n 4 1 variables. Define F g") € H

(n+1)

equivalence class in H,,,
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Definition 4. We define the extended stochastic integral with respect to a Lévy process L
/Ao(u)cTLu (I @ He — (L)) (13)

by a formula

A Z ®n+1 F (14)

where fgo) = F.(O)lA(-) € He = HY and F" e %" 1 € N, are constructed by the

ext’ A ext

kernels E € H") Hc from decomposition (11) for F.

ext

One can show quite analogously to [16] that this integral is a linear continuous operator; and,
moreovet, if F is integrable by It6 then F is integrable in the extended sense and the extended
stochastic integral coincides with the Itd stochastic integral.

Sometimes it can be convenient to define the extended stochastic integral by formula (14)
as a linear operator

/Ao(u)cTLu L (1)F @ He — (12)F. (15)
If 8 = —1 then this operator is continuous (bounded) [16], for B € (—1,1] operator (15) is
unbounded. But if we accept the set
{F e (L2)F @ He - H/ WL ;= Lt 1)1)+Bar D) E 2 o oo}
9, n=0

as the domain of integral (15) then the last is a closed operator [16]. Also we note that the
extended stochastic integral can be defined by formula (14) as a linear continuous opera-

q%Jroo(L?-)q’3 ® He to (L?)P, or from (L2)P @ He =
ind limy_, 4oo(L?) " @ He to (L?)~F, here B € [0,1].

Now for plenitude of picture we recall very briefly a notion of a Hida stochastic derivative
in the Lévy white noise analysis, in terms of Lytvynov’s CRP (see [8, 16, 17] for a detailed
presentation).

tor acting from (L?)f ® H¢ := prlim

Definition 5. We define the Hida stochastic derivative 15(+)d. : (Lz);ﬁq — (LZ):g ® Hc as a

linear continuous operator adjoint to extended stochastic integral (13), i.e. for all F € (L?) g ®
He and G € (L2);F,

(FO) 100G 2y = ([ FLu G))

If instead of integral (13) one uses integral (15), the corresponding Hida stochastic deriva-
tive will be a linear unbounded (except the case § = —1), but closed operator acting from
(Lz) P to (Lz) P& Hc [8]. Further, it is clear that the Hida stochastic derivative can be defined
as a lmear contmuous operator acting from (L?)f to (L2)f @ H¢ (B € [—1,1]) that is adjoint
to the corresponding extended stochastic integral. We note also that the extended stochastic
integral and the Hida stochastic derivative are mutually adjoint operators [8,16,17].

Let us write out an explicit formula for the Hida stochastic derivative in terms of decompo-
sitions by the Wick monomials. Let G") € H EZZ ,n €N, ¢" € G be arepresentative of G.
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(n-1)
ext

We consider ¢(")(-), i.e. separate a one argument of g'( "), and define G )( ) €eH ® Hc as
the equivalence class in ngt Ve He generated by ¢ (+) (i.e. ¢ (-) € G (). Itis proved
in [17] that this def1n1t10n is well-posed (in particular, G(")(-) does not depend on a choice of a

representative ¢ () and

G- oo Dope = <G oy (16)

ext

Note that, in spite of estimate (16), the space 1" ne IN'\{1}, is not a subspace of Tion )

ext”’ ext
Hc because different elements of H gxz

The following statement easily follows from results of [8, 16,17].

can coincide as elements of ngt Y ® He.

Proposition. For a test or square integrable or generalized function G of form (5)

(9]

19.G = Zn o, G ()1a(-)): = Y- (n+1): (02", GV ()14(:)) 1.

n=0

At last, we recall a notion of operators of stochastic differentiation (see [6,7] for a detailed
presentation). Let n,m € Z. Consider a function i : R""" — C. Denote

h(ull ce Unp Uy, ey, un—i—m)

) h(ur, - ungm), ifforalli € {1,... n},j€{n+1,...,n+m}u; # uj (17)
' 0, in other cases

oxt? Gm ¢ ’ngt) We select representatives (functions) f n e F(”) and

Let £ ¢ 7™

g'(m) e G, Set h(ul,;. S Upem) = f(")(ul,...,un) -g'(m)(unH, . Upim). Let f m) be
the symmetrization of i (see (17)) by all variables, F () o G(m) ¢ Hﬁ,’jﬁ ") be the equlvalence
class in ngt "™ that is generated by f(Wg(m) (ie. fmg(m) ¢ FW o GM) 1t is proved in [6]

that this definition is well—posed (in particular, F(") o G(") does not depend on a choice of
representatives from F(") and G(")) and

‘P(n) <& G(m)’ext < ‘P(H)‘ext‘G(m)‘ext- (18)

Let F(m) ext , f ext), m > n. We define a "product” (f( n) F(m))gxt € chnt_n) by
setting for each g( ") ¢ Hgft ")

(g, (F), F0) i) ext = (F) o gUm=m), Fm), (19)

Since by the Cauchy-Bunyakovsky inequality and (18)

|(f(n) Og(m_”), F(m))ext| < |f(n) <>g(m_n)|ext|1:|(m)|ext < |f(n)|ext|g(m_n)|ext|F(m)|extz

this definition is well-posed and

’(f(n)/ F(m))ext‘ext S ’f(n) ’ext‘F(m)‘exb (20)



92 FREI M.M.
Definition 6. Letn € N, f") ¢ Hgg We define an operator of stochastic ditferentiation

(D"o)(f™) = (L)) — (LA, (21)

by setting for F € (Lz)g

DB 1= B g (05 (A )
= (m s )1 (22)
= Z 7] :<O®m/ (f(n)/F(m+n))€xt> Y
m=0 m.

where F(") ¢ Hg;’? are the kernels from decomposition (5) for F.

Using estimate (20) one can show [6] that this definition is well-posed and operator (21)
is linear and continuous. Moreover, in the case B = 1 formula (22) defines a linear continuous
operator (D"o)(f™) on (LZ)}V qeZz.

Finally, as is easily seen, (D"o)(f (")) can be defined by formula (22) as a linear continuous
operator on (Lz)ﬁ, B € [—1,1]. Namely a linear continuous operator

(Do)(g) := (De)(9) : (L) P = (I)F, geHi=He, B, (@3
will be a subject of study in the forthcoming section.

Properties of operators of stochastic differentiation on spaces of regular test and general-
ized functions of the Lévy white noise analysis are considered in detail in [6,7,9]. Here we note
only that the operator D = D! and the Hida stochastic derivative are connected as follows [7].
Denote 9. := 1g, (-)d.. Let F € (Lz)g and g € 1l = Hc. Then

ext —

(DF)(g) = [ QuF - glujdu € (L),

here the integral in the right hand side is a Pettis one (the weak integral). Taking into account
this equality, one can write formally

9.0 = (Do)(6.), (24)

where 4. is the Dirac delta-function concentrated at -. In order to give a nonformal sense to
equality (24), one can consider operators of stochastic differentiation on so-called spaces of
nonregular generalized functions, see [18].

2  ELEMENTS OF WICK CALCULUS

21 Wick product and Wick versions of holomorphic functions

In this subsection we introduce and study a Wick product and Wick versions of holomor-
phic functions on (L?)~#, now g € [0, 1].
First we give necessary definitions.
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Definition 7. For F € (L?)~F we define an S-transform (SF)(A), A € D¢, as a formal series

Z ; ext = F( ) + Z (F(m)/ A®m)extz (25)
m=0 m=1

where F(") ¢ ngt), m € Z., are the kernels from decomposition (5) for F (each term in

series(25) is well-defined, but the series can diverge). In particular, (SF)(0) = F(0), 81 = 1.

Definition 8. For F,G € (L?) and a holomorphic at F{°) functionh : C — C we define a
Wick product FOG and a Wick version h¥ (F) by setting formally

FOG := S~Y(SF-SG), hY(F) := S~ h(SF). (26)

Remark. It is obvious that the Wick product ¢ is commutative, associative and distributive
over a field C.

A function h from Definition 8 can be decomposed in a Taylor series

h(u) = Y hw(u— (SF)(0))™. (27)

WO(F) = Y hu(F — (SF)(0))*", (28)
m=0
where FO" .= F(--- OF, FO0 .= 1.
m times
It easily follows from formula (2.23) in [19] that for £ ¢ ’ngt), (m) ¢ ngt), nmeZ.,,
and A € D¢
(F(n)/ A®n>ext(G(m)/ A®m)ext — (F(n) <& G(m)r )\®n+m)ext (29)

(a product ¢ is defined in Subsection 1.4).

Using this formula, by analogy with the Meixner analysis [14] one can prove the following
statement.
Proposition. For F,..., F, € (L?)~P

(o]

FO---OF, = Z (o®m, Z F1(k1)<>...<>1:’gkn)>: (30)
m=0 ki, kn€Z 2 ki+---+kp=m
(in particular, for F,G € (L?>)™F FOG = OXOJ (oM, g F®) o Gm=h)):), where F( ) e ngt),

m=0 k=0
j € {L,...,n}, kj € Z,, are the kernels from decompositions (5) for F;; F®), Gk ¢ ngz,
k € Z., are the kernels from the same decompositions for F and G respectively. Further, for

F € (L?)~P and a holomorphic at (SF)(0) = F) functionh : C — C

e} m
O F) =hy + Z ;<o®’“, Z h, Z p(k1) <>...<>F(kn)>:’ (31)
m=1 n=1

Ky kn €N Ky +ky=m

where F) ¢ Hﬁxi, k € Z., are the kernels from decomposition (5) for F, h, € C,n € Z, are

the coeftficients from decomposition (27) for h.
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It is clear that in order to give a nonformal sense to notions "the Wick product" and "the
Wick version of a holomorphic function", it is necessary to study a question about convergence
of series (30) and (31) in the spaces of regular generalized functions. Using estimate (18), it is
possible to do it as in the Meixner analysis [14]. As a result, for the Wick product we obtain the
following statement (remind that now g € [0, 1]).

Theorem 1. Let Fy,...,F, € (L?)~P. Then F; - - - OF, € (L?)~P. Moreover, the Wick product
is continuous in the topology of (L2)=F: for arbitrary Fy, ..., F, € (L2)=F, n € N, there exist
7,9 € Z4 (q > q' + (1 —p)log,n +1) such that

[FrO - -~ OFull—g,—p < \/max 2= (m+ )" R g,—p- - [ Fall-g,—p
mEZ+

(see (10)).

Now let us pass to consideration of the Wick versions of holomorphic functions. It follows
from Theorem 1 and (28) that if F € (L?) " and h : C — C is a polynomial then h®(F) €
(L2)~F. But for a general h the situation is more complicated: as in the Meixner analysis, the
cases f = 1 and B € [0,1) essentially differ. The case f = 1 is comparatively simple: by
analogy with [14] we obtain

Theorem 2. Let F € (L?)~! and a function h : C — C be holomorphic at (SF)(0). Then
hO(F) € (L?)~ L.

Let now 8 € [0,1). Since (L?)~# C (L?)71, for F € (L?)~F and a holomorphic at (SF)(0)
function /i : C — C, by Theorem 2 the Wick version 1° (F) is a well-defined element of (L%)~".
But at the same time it is possible that 1% (F) ¢ (L?)~#, if h is not a polynomial. More exactly,
we have the following result.

Theorem 3. Letug € C, h : C — C be a holomorphic at u function, which is not a polynomial
and is such that all coefficients h, from the Taylor decomposition

h(u) = i By (u — ug)" (32)
n=0

are real and non-negative. Then for each B € [0,1) one can find F € (L?)~F with (SF)(0) = ug
such that h®(F) ¢ (L?)~F.

The proof of this statement, in the same way as the proofs of Theorem 4 and Theorem 5
below, is completely analogous to the proof of the corresponding statement in the Meixner
white noise analysis [14] and therefore can be omitted.

It follows from Theorem 3 that if /1 is not a polynomial then, generally speaking, there are
no estimates for coefficients from decomposition (32), which can guarantee that for arbitrary
F € (L?)7F, B € [0,1), with (SF)(0) = ug, h°(F) is an element of (L?)P. Nevertheless, the
following statement is valid.

N
Theorem 4. Let F = Y :(o®" F(m). ¢ (L2)=F, Fim) ¢ ()

ext - N € Z; and coefficients

m=0
h, € C,n € N, from the Taylor decomposition

h(u) = i By (u — FO)n
n=0
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for a holomorphic at FO) € C functionh : C — C satisfy estimates

K}’l

|hn| S nN#

(33)
n

with some K > 0. Then h°(F) € (L?)~F.

Letnow 0 < B; < B2 < 1. We describe a sufficient condition under which #%(F) € (L?)~F2
for F € (L?)~P1 (note that if B, = 1 then by Theorem 2 h¥(F) € (L?)~! without additional
conditions).

Theorem 5. Let0 < B < B < 1, F € (L?)™P1, h : C — C be a holomorphic at (SF)(0)
function. If there exists K > 0 such that for arbitrary n € IN

|ha| <

BN
max_ | i
meN: m>n \ ([2]n)rF2,F1
where h,, are the coefficients from decomposition (27) for h, [-] denotes the integer part of a
number, then h (F) € (L2)~F2.

By analogy with the Meixner analysis [14] one can apply the above-formulated results for
study of stochastic equations with Wick-type nonlinearities.

Example. Let us consider a stochastic equation
t t -
X = Xo+ / X,OFds + / X,0GdLs, (34)
0 0

where Xo, F,G € (L2)7P, fot X;OFds € (L?)1 is a Pettis integral (the weak integral). Applying
the S-transform and solving the obtained nonstochastic equation, we obtain

t
SX; = SXo - exp{SFt + SG / A(s)ds).
0
Now it is sufficient to apply the inverse S-transform in order to obtain the solution of (34)
X; = XoO exp®{Ft + GOL;} € (L?)~!

(the fact that X; € (L?)~! follows from Theorem 1 and Theorem 2). In order to obtain X; €
(L2)~F, B < 1, we have to impose additional conditions. For example, let F and G be "polyno-
mials" in the sense that their decompositions (5) contain only finite number of nonzero terms.
Set N := max[pow F, pow G + 1], where pow H denotes the quantity of nonzero terms in de-
composition (5) for H. If there exists K > 0 such that for arbitrary m € IN, where pow H is the
greatest number of nonzero term in decomposition,

1—
mN TP

T (35)

then by Theorem 4 X; € (L*)~P (see (33), now h(u) = exp(u), hy = = for eachm € IN). Note
that estimates (35) are fulfilled if and only if N < ﬁ, this fact is proved in [14].
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2.2  Wick calculus and operators of stochastic differentiation

In this subsection we consider an interconnection between the Wick calculus and the oper-
ator of stochastic differentiation D (see (23)). In particular, we’ll prove that this operator is a
differentiation (satisfies the Leibniz rule) with respect to the Wick multiplication.

We define a characterization set of the space (L?)~F in terms of the S-transform, setting
Bg := S(L?)F = {SF : F € (L?)P}. Itis clear that Bg is a linear space, which consists of
formal series Of; (F(m),.@m), .+ (see (25)) with the kernels F(") ¢ Hgﬁ) satisfying a condition:

m=0

there exists § € Z such that Y (m!)1=F2-9"|F(")|2 < co. It follows from Definition 8 and
=0

m=
Theorem 1 that Bg is an algebra with respect to the pointwise multiplication.

Letg € Héxz Hc. We define a "directional derivative” Dy : Bg — Bg as follows. Set for
(SF)(-) = Z ( (m),.@m) o+ € Bg (F € (L*)7P, Fm) ¢ ’H(gz) are the kernels from decomposi-
tion (5) for F )

DOSF Z m+ 1 m+1)1g<> ext Z m+ 1 (m+1))extz '®m)ext € Bﬁ (36)

(see (19)). Since S_l(D<g>SF) = OZO‘, (m +1): (%™, (g, F"+1)),.4): = (DF)(g) € (L?)~P (see
m=0
(22)), the operator D; is well-defined and the following statement is valid.

Proposition. The operator of stochastic differentiation (Do)(g), § € %ﬁxi Hc, is the pre-

image of the "directional derivative" Dy of So under the S-transform, i.e. for all F € (L2)~=F
(DF)(g) = S~'(DgSF) € (L*)~P. (37)

Remark. If we introduce on Bg a topology induced by the (inductive limit) topology of (L2)~F,
then the S-transform will be a topological isomorphism between a topological algebra (L?)~F

with the Wick multiplication and a topological algebra Bg with the pointwise multiplication.
(1)

Now the "directional derivative" Dg, ¢ € H,y, i
differentiation (Do)(g) on (L?)~F ( under the S-transform). Of course, Dy : Bg — Bg is a linear
continuous operator.

is the image on Bg of the operator of stochastic

The main result of this subsection is the following

Theorem 6. The operator of stochastic differentiation D is a ditferentiation with respect to the

Wick multiplication, i.e. for arbitrary F,G € (L?)~F and g € Héx% He

(D(FOG))(g) = (DF)(8)0G + FO(DG)(g) € (L?)F. (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of (38)
belong to (L?)~#, this follows from the definition of operator (23) and Theorem 1. Let us prove
the equality (38). By (37) and the first formula in (26)

(D(FOG))(g) = S™H(Dg(S(FOG))) =
(DF)()0G = S'(S(DF)(g) - SG)
FO(DG)(g) = S~'(SF-S(DG)(g))

S~ (D§(SF - 5G)),
S~1(Dg(SF) - SG),
S~Y(SF - Dy(SG)),
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therefore it is sufficient to prove that

D¢(SF - SG) = DS(SF) - SG + SF - D(SG). (39)

Let FM, G e H™ be the kernels from decompositions (5) for F and G respectively.

ext

Using (25), (29) and (36), we obtain

(SF)X) = X (F), A7), (SG)(1) = 1. (G, A",

SEIN) - (5)) = L (Fe o, vy,

DS ((SF)(A) - (SG)(A); = io(n +m)(F™ o G, g o ASHHM=1y, )

DS(SF)(A) = ion(ﬂ"), g/<>}\®”1)ext,D§(SG)()\) = iom(G(m), g oA 1,
Dg(SF)(A) (SG_>(A) ion(F(’“,gM@” Y f(G“”),_A ")ext,

(SF)(A)-Dg(SG)(A) = Y m(FU", A%, (G, g 0 A¥™ 1) oy,
n,m=0
here A € D¢. So, in order to prove (39), it is sufficient to show that for all n,m € Z
(n+m)(F™ o G, g o AT"Tm=L) oy = n(F), g 0 ABM 1) (GUM), A¥M) 0y (40)
+ m(F(n)/ A®n)ext(G(m);g o A®m_1)ext-

It is easy to see that for n = 0 or m = 0 equality (40) is valid, therefore we consider the case

n,m € N only.

Let us consider (1 + m)(F" o GI™), g o A®"+m=1), . Denote by ' £ e F and g( m e
G(™) representatives of the equivalence classes F(") and G(™). Set f(n g = f() . ¢(m (an
operation © is defined in (17)). Let f(")g(") be the symmetrization of f(")¢(") with respect to

(n+ )

ext

by f@): f@) € F o GM, Similarly for A € D¢ and a representative ¢ € "8/ 8€ H

set A®ntm—lg .= A\@nt+m-1. ¢ and denote by A®"+m~1lg the symmetrization of A= 1o with

—

all arguments. We remind that F(") o G( ™) is an equivalence class in H that is generated

(1)

ext’

respect to all arguments. Then A®"+m-1g € oo A®"+m—1 (an equivalence class g © AZ" M1 ¢
(AR generated by A®n+m—lg).

ext
Without loss of generality, one can assume that f(") and ¢(") are symmetric functions, and

m > n. Taking this into consideration, we obtain

T n!m!

f(n)g(m) (ull .. .,un; un—|—1/ .. .,un+m) = m

—_——

o Z f(n)g(m) (upl, ey l/lpr, l/lql, ceey T/lq,17r} (41)

1<p1eepn<nn+1<qq,.. qm<n+m
0<r<n,p1<-<prppp1<<pPni1 < <qn—rlp—r+1<"<qm

Upyirr s Upys Ugy iar s Ugy),
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here for r = n the argument in the right hand side of (41) is (1, ..., n; Uyi1, - -, Untm); forr =
0 this argument is (”qlr e Ug U, e U Uy gy ”qm) (see [7] for a detailed explanation).
Substituting (41) in the left hand side of (40), we obtain (see (6))

—_—

(ﬂ + m)(F(n) o G(m),g0A®n+mfl)ext — (1’1 4 m)(f(n)g(m)’}\®n+mflg)ext
2 2
= (n+m) y (n+m)! (szl|lv> 51_“<||pzk||u> *

A sl 5! Ih! I !
Kl EN =1k, 1>l > >l ©1 k 1 k
lysy+-+lgsp=n+m

—_—

n m
X /]Rsf'””kf( )gl )(ul,...,ul,...,u51+‘.‘+sk,...,u51+,.,+sk)
I

Iy

—

XO(ASTFM=) (g, - UL, e Usyogsyr o ooy Uy oegs ) AU - - AU s, =
——
ll lk (42)

B n!m! P llv =1 1 llv 2
= (n+m) )3 51!'-'Sk!< ! < !

k,lj,sje]N:j:L...,k, I >lp>>1y,
Iysy+-+lgsp=n+m

n m
X |:/H{j}++sk f( )g( )(ull"'/ulf"'lusl++Sk/"'/usl++Sk)

ll lk

—

X(ASTFM=1 ) Uy, oo U, oo Usygoqsyy ooy Uy oty AU -+ AU 4oqs ]

ll lk

We say that a collection of equal among one another arguments (e.g., (11, ..., 1)) is called
a procession. It follows from the ordering in ascending of indexes in (41) and in (6) that proces-
sions in summands in interior sums [- - - | from (42) can "tear" only so that different parts of a
"torn" procession will be for different parties from ’;’; processions being for one side from ’;’
do not switch places; and elements in processions do not switch places. In addition, it follows

from a construction of f("¢(m) (see (17)) that summands in interior sums [- - -] from (42), in
which a procession is divided by ’;’, are equal to zero. Another summands (if there exist for a
collection k, I, s;) disintegrate on groups of equal among one another integrals. These groups
arise by means of transpositions of processions with equal quantity of members, which are
placed before ’;” and after ’;’, an equality of integrals under such transpositions from the sym-
metric property of a function ASn+m=1 g follows: this symmetry gives a possi@it\y to transpose

mutually processions with equal quantity of members in the argument of A®"+7m—1g_ Ttis clear

that if there are s’ processions of length I before ’;” and s” processions of length [ after ;" tnen by

1 MY
oy . : S—+S§"):
means of mutual transpositions of these processions one can obtain % equal summands.

So, nonzero terms in the last expression in (42) are "connected" with equalities
lisi+ -+ sy =n+m, (43)
that can be presented in the form

Lsi+ - +luspy =n, )+ -+ s =m,
/1 g/ / !/ / 1 1 1 1/
k,k ,ll,...,lk/,Sl,...,Sk/,ll,...,lk//,sl,...,Sk//EN, (44)

B> sl > > 10
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(the first sum in (44) corresponds to first n arguments of f(")¢("), the second sum corresponds
to last m arguments) as follows. For each s; from (43) either there exists st = S; (=1 j) or there
exists s = s; (If' = I;) or there exist s} and s}, such that s; + 53, = s; (I} = Iz, = I;). Inequalities
for I/, 1” in (44) follow from inequalities /; > --- > [; and ordering of indexes in (41) and (6)
(more long processions have smaller indexes of arguments).

We will replace each group of the above-described equal among one another integrals in
the right hand side of (42) by a representative multiplied by a quantity of terms in the group.

Also, since the Lebesgue measure is non-atomic, we can replace here (%) ¢(m) by £(") . ¢(m) (in
summands that remain elements of each procession are placed on the same side of ’;"). Now,

taking into account that w' " = w¥w", one can rewrite the last expression in (42) in the form

> nlm!(n + m)
Mool g g
HSy el st =, IS et sl =, S51° SprS1° Sk

P A AR AN

/ o "
ll>~~~>lk,, 1 >~~~>lk,,

2s] 2s! 2s! 2
g I\ (e T (oo™ (e, 1\ ™

(1)
X A{s’l+~~~+s;<,+s/1/+~~+s;<’,, f (ull cee UL, uS/1+"’+S;(/’ sy us/1+...+5;(/)
+ ’
ll

I,
45
. (45)

<(m
X g( )(un+1r .. .,un+1, ce ,Mn+si/+,,,+s;(/”, .. .,un+S/1/+,,,+skH
N———

l// M
1 lkN
—_—

n+m—1
x (A®n+ g)(ul,...,ul,...,usfl+,.,+s;{/,---r”s’1+w+s;{,r

h

’
Zk’

)

Upnit,e - Uns1,e - -y un+5’1’+‘~‘+5// IEERY un+s’1’+~~+sk,,
————

K
1 l//
K

X du1 .. -dusll+,,,+S;{/dun+1 s dun+s/1/+,,,+S;(/N.

Further, the symmetrization of a function A®"+"~1¢ has a form

—_— 1
(ASHM=1e) (g, . ty) = T ; (ASFEMA) (1), - U (nym))s  (46)
TTESn+m

where 5,1, is the set of all permutations of numbers 1,...,n + m. This representation can

be essentially simplified if we take into account that A®"+"~1g is a symmetric function with
respect to first n + m — 1 arguments. Namely, consider all summands from (46) with the last
argument Uy . It is clear that there are (n + m — 1)! such summands, because they can be ob-
tained by arbitrary permutations of arguments uy, ..., 1, 4,,—1. Taking into account the above-
mentioned symmetry one can conclude that all these summands are equal among one another.
So, itis possible to replace them by an arbitrary representative multiplied by (n +m —1)!. Sim-
ilarly one can group summands with the last arguments 1,41, Uyym—2, ..., u1. Substituting
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multiplied by (n + m — 1)! representatives of these groups of summands in (46), we obtain

— 1

(ASnm=Le) (U, ...y Upm) = [(A®mTm=1e) (uy, ..., tnrm)

(n+m) (47)
+ (A2 (g, U, oo Upgem—1) + o+ (ALY (1, g, 1) ]

(representatives of the above-described groups of summands are selected subject to conse-
quent calculations).
Substituting (47) in (45), we obtain

nlm!
spl-- sy syl sl
lisllw; +lk/sk, n/ l/// ’+N +l;(’,, ;(’//// m, 1 k' k"
KR el 1 o 11, My sl sll €N,
1> >lk,,l > >l]’(’,,
2s! 2s!, 25" 25",
1) ™ A 7 A A A
— s | = — - X
I ] o I,

((n)
X \/]RSlJr +Sk,+sl+ +Sk,/ (ulr Y ATEEE rus’1+‘-‘+s;(,/ “ee ru5’1+‘.‘+5;(,>
Jr
l/
1

lec’
48

s(m
Xg( )(un+1/"'lun+1""/un+s’1’+‘~‘+s;(’,,/" n+s”+ s
N———

"
Z1

k!

"
lk//

X [(A®"+m*1g)(u1,---,ulf---z”s’1+~~+s;(,/--- u pn—

h

\~
!
L

PEN

(257 PR 7 3 T PR i’l+S’1’+ s
———

"
ll

1"
o’ ”7L51Jr +sk,,

"
lkN

X duqy---du p—— duyyq-- du,HS”+ sl
where each next term in the sum [- - - | with n 4+ m summands is obtained from the previous
term by the "shift of arguments": (-1,..., nim—1, ‘n+m) — Cntm, 1,---, n+m—1) etc. Taking
into account the structure of ASmEm—1 ¢ (in particular, its symmetry with respect to first n +
m—1 ﬁrgments), the non-atomicity of the Lebesgue measure, and equalities (47) for Aa”*\lg

and A®"~1g, we can continue (48) as follows:

(1’1 + m)(F(n) o (;(m)’g<> A®n+m71)ext

n!m!
- 1M1 ... g1
s bl = +1]’<’,, = syl splsy st
k/ k// 1/ " lk/ / ;(/ li/ l;{’,, // klleN'
1> >11’( 1> 1]’(’,,
2s! 2s’, 25" 25",
1Pl ™ e, 1\ = (Ml ) I, 1\ ™
>< - oo _— _ ..
!/ / " 1
13! lk,! 17! lkHI

‘(n)
X /Y51+ +5k,+5//+ +qk// (ul,...,ul,...,usll_;’_‘“_;’_s;{/,---,us/l_j’_‘“ S;{,)
+ I
1

’
Zk’
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/ l/,
" ) X [All (ul) Ak (usfl+...+s;(,)

s\m
X g( )(un+1, e U, - .,unHH,,,Hu P .,un+slll+m+sk”
——— —

K
l// 7/’
1 lkN

X ((A®M—1g)(un+1, ce Uy, .. .,un+si/+,,,+su P .,unJrS/l/ijJrS//N) + .. )]
———

K’ k

l// M
1 lkN

X duq - -dusll+...+s;(,dun+1 T dun+s’1’+~-+s"

kN

n'm!
+ ghlev gl It gl 1
lis’1+<~+lll(,s]/(/:n, li’sibr--drl]/(/,,s]/(///:nl, 1 k71 k"

KK oy 53 S A ey Y oSl €N,
l{>--->l]’<,, l{’>--->l]’<’,,

2 ! 2 / 2 " 2 "

||P1{Hv 7 ”pl,’(,”v w lei/Hv 1 HPI;(’,,HV k!
>< l/' PN l/ ' 1/7/’ PN l// '
1° K 1° k'

o(n)
X /Rs’1+---+s;(,+s’1’+---+sl’<’,, f (ulf cee UL,y uS’1+---+S;(,’ T uS’1+~~-+S,’(/)
+
l/

1 l]’(,
(m
X g( )(unJrl, e U1, ,lxln_._si/_i_m_,’_s;(/”, .. "un+S/1/+~“+S]Z,,>
Iy ) y ’
lk//
n—1 ..
X |:(()\® g)(ul,...,ul,...,usll_i_‘“_._s;{/,-..,usll_._.“_._s;{/)—|—- )
I
1 ZI/(/

1" "
X Al (un+1) A k”(un+5/1’+...+s;(///) du1 s dusllJr,,,Jrs;(,dun_._l s dunJrS/l/erJrs;(/N

= m(f(n)/ A®n>ext(g(m)/ A®milg>3xt + n(f(n)/ A®nilg>3xt(g(m)r )\®m>ext
= m(F(n), )\®n>ext(G(m)/g<> )\®m71>ext + H(F("),go A®n71)ext(G(m)/ A®m>ext~

So, (40) is fulfilled, hence (39) is valid and therefore equality (38) is proved. O

Corollary. Let F € (L?)7F, ¢ € ”chz = H¢, and h : C — C be a holomorphic at (SF)(0)
function. Then

(Dh®(F))(g) = W (F)O(DF)(g) € (L), (49)

where 1'C is the Wick version of the usual derivative of a function h.

Proof. First we’ll prove by the mathematical induction method that for each m € Z
(D(F=(sF)(0)°") (g) = m (F = (SF)(0))*" " 0(DF)(g). (50)

In fact, in the case m = 0 equality (50) is, obviously, true (we remind that (F — (SF)(0))%? =1
by definition and for G € C C (L?)"P DG = 0). Let us suppose that (50) is valid for m < k,
k € Z. In particular,

(D(F = (sF)(0))%) (3) = k (F = (SF)(0)) " O(DF)(g). (51)
We have to show that
(D (F = (sF)(0))%*") (8) = (k+1) (F = (SF)(0) ** O(DF)(2).
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Using (38) and (51) we obtain

D(F—($ ><o>><>"“)< )

(b

RS

(DL(E = (SE)(©0)% 0 (F = (sF)(0)]) (g)
(SF)(0))7) ()0 (F = (SF)(0)) + (F = (SF)(0))** 0.(D (F = (SF)(0))) (3)
(F — (SF)(0))* 1 O(DF)(8)0 (F — (SF)(0)) + (F — (SF)(0)) * 0(DF)(g)
(F — (SF)(0))* O(DF)(g) + (F — (SF)(0))** O(DF)(g)
= (k+1) (F = (SF)(0))* 0(DF)(g),

(
(

which is what had to be proved.
Further, consider decomposition (28) for 1% (F). Let hS, (F N(F) == Z hw (F — (SF) (O))Qm be

the N-th partial sum of this decomposition. It follows from the hnearlty of D, (50), and Theo-
rems 2 and 1 that

=

(Dr(B) () = L o (D (= (SF)(©))*™) (3)

3
I
—_

I
=z

i (F = (SF)(0)) "1 0(DF)(g) = H(F)O(DF)(g)

3
I
—_

in (L?)~!, where 1'° is the Wick version of the usual derivative of a function 4. On the other

hand, since (Do)(g) is a continuous operator on (L?)~1, <Dhl<2](F)> (g) ¢ (DKO(F)) (g) in
—00

(L2)~1. So, equality (49) is valid. O
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@peit M.M. Bikigcvke uliCIeHHS HA NPOCHIOPAX peeyAIpHUX Y3aeANbHeHUX PYHKYITE aHanisy 611020 wymy
Aesi // Kapnarceki MmaTeM. my6a. — 2018. — T.10, Nel. — C. 82-104.

barato 06’exTiB I'aycciBchkoro aHaAisy 6iaoro mrymy (IIpocTOpY OCHOBHMX i y3araabHeHMX PyH-
KIIil, CTOXaCTWUHI iHTerpaAu Ta MOXiaHi, TOmIO) MOXHa 6yAyBaTH i AOCAIAXYBaTH Y TepMiHaX Tak
3BaHMX XaOTUYHMX PO3KAAAIB, III0 6a3YIOThCS Ha 84cHuoci xaomuurozo poskaady (BXP): rpybo ka-
XyuM, KOKHY KBaApPaTMUHO iHTErpPOBHY BiAHOCHO rayccCiBChbKOI Mipy BUITAAKOBY BEAVUMHY MOXKHA
PO3KAACTH Y psIA CTOXACTUUHMX iHTeTpaAis ITo Bia HeBrmaaxosux dpyHKIiN. Y aHarisi Aesi HeMa
BXP (xpim raycciBchbKOro Ta IyacCOHiBChKOrO YaCTMHHMX BUIAAKiB). TuM He MeHINI, icHYIOTb pi3Hi
y3araabHEHHsI ITi€l BAQCTMBOCTI. BMKOpMCTOByIOUM Li y3araabHEHHsI, MOXHa OyAyBaTy pisHi mpo-
CTOPY OCHOBHIIX i y3araAbHeHMX (pYHKIIA. |y KOXXHOMY BMITaAKY HEOOXiAHO YBOAMTY IIPYPOAHVIA
AODYTOK Ha IIPOCTOpax y3araAbHeHMX (PYHKIIil, Ta BUMBYATH IIOB s13aHi muTaHHS. Lleit AobyToK Ha-
3UBAETHCSI iKIBCLKUM 000YMKOM, SIK Y TayCCiBCBKOMY aHaAi3i.

KoHcTpyxkuist BikiBcbKoro A06yTKY y aHaAi3i AeBi 3aAeXWUTh, 30KpeMa, Bia 06paHOTO y3araabHe-
HHs1 BXP. V wmit craTTi M1 MaeMo CpaBy 3 AMTBMHIBCHKMM y3araabHeHHsIM BXP Ta 3 BiamoBiaHMMY
IIPOCTOPaMM PETYASIPHMX y3araAbHeHMX PyHKII. MeToo CTaTTi € yBecTy Ta BUBUMTH BiKiBChKIMIA
AOGYTOK Ha LMX IMPOCTOpaXx, Ta PO3TASHYTH AesIKi MOB’sI3aHi MMTaHHS (BikiBehbki Bepcii roroMop-
dHMX pyHKIIIN, B32a€MO3B 130K BiKiBCHKOTO UMCAEHHS 3 OIlepaTOpaMy CTOXaCTUYHOTO AMdpepeHITi-
1oBaHHsT). OCHOBHI pe3yAbTaTH CTATTi HOASATAIOTH Y BUBUEHHI BAACTMBOCTEN BiKiBCBKOTO AOOYTKY
Ta BiKiBCHKIMX Bepcili roroMOpdHIX (PYHKIIN. 30KpeMa, M AOBEAH, III0 OIIePaTOP CTOXaCTUIHOTO
AVi(pepeHIIIIOBaHHS € AMpepeHIIIOBaHHIM (3aA0BOABHSIE ITPaBUAO AelibHilla) BiAHOCHO BiKiBCBKOTO
MHO>XeHHSI.

Kntouosi cnosa i ppasu: Ilporiec Aesi, croxacTane AvidpepeHIiIOBaHHSI, BiKiBChKIMIT AOOYTOK.
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ON NONLOCAL BOUNDARY VALUE PROBLEM FOR THE EQUATION OF MOTION
OF A HOMOGENEOUS ELASTIC BEAM WITH PINNED-PINNED ENDS

In the current paper, in the domain D = {(t,x) : t € (0,T),x € (0,L)} we investigate the
boundary value problem for the equation of motion of a homogeneous elastic beam

up(t,x) + azu””(t, x) + buyx(t, x) + cu(t,x) =0,
where a,b, c € R, b? < 44a?¢, with nonlocal two-point conditions
u(0,x) —u(T,x) = ¢(x), u:(0,x) —u(T,x) =1p(x)

and local boundary conditions u(t,0) = u(t,L) = uxx(t,0) = uxx(t,L) = 0. Solvability of this
problem is connected with the problem of small denominators, whose estimation from below is
based on the application of the metric approach. For almost all (with respect to Lebesgue measure)
parameters of the problem, we establish conditions for the solvability of the problem in the Sobolev
spaces. In particular, if ¢ € Hq+p+2 and ¢ € Hyp, where p > 2, then for almost all (with respect to
Lebesgue measure in R) numbers 4 there exists a unique solution u € C2([0, T]; H;) of the problem.

Key words and phrases: nonlocal boundary value problem, homogeneous beam, small denomina-
tor, Lebesque measure, metric approach.
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INTRODUCTION

Among nonclassical boundary value problems for partial differential equations, the prob-
lems with nonlocal conditions occupy an important place, including those that connect the
values of required solutions and its derivatives in at least two boundary or interior points of
the domain considered. The periodicity conditions are the simplest of these conditions.

A general definition of nonlocal conditions and their classification were introduced by Nak-
hushev [11].

Nonlocal problems for partial differential equations are usually ill-posed in Hadamard’s
sense, and their solvability (in case of a bounded domain) is connected with the problem of
small denominators and is unstable with respect to small variations both in the coefficients of
the problem and the parameters of the domain.

Azizbayov and Mehraliyev [1, 2] studied the nonlocal problems for the nonlinear equation
of motion of a homogeneous elastic beam in a rectangle. By using the contracting mappings
principle, the authors proved the existence and uniqueness of the solution in case |§| # 1,

YAK 517.958:531.12
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where J is the parameter of nonlocal conditions. Sabitov [13] investigated the Cauchy problem
for the equation of the beam’s motion with clamped ends. In particular, theorems of the ex-
istence and uniqueness of the solution in the classes of generalized and regular functions are
proved.

The present paper is based on ideas close to those used in [6,16]. The conditions of solvabil-
ity of nonlocal problem in the time variable f for fourth order hyperbolic equation in a rectangle
are established. The metric approach is used to find the lower bounds of small denominators
appearing in the solution of the problem.

For some classes of equations and systems of equations, non-regular class of problems
with nonlocal conditions with respect to a select variable t were investigated among others
in [5-9,12,14,15,17-19].

1 PROBLEM STATEMENT

In the domain D = {(t,x) : t € (0,T),x € (0,L)} we consider the problem for the equation
of wave motion of an elastic beam:

P(u) = up(t, x) + aPtixaxrc(t, %) + iy (£, x) +cu(t,x) =0, (t,x) €D, (1)

with local conditions of pinned-pinned ends
u(t,0) = u(t,L) = uxx(t,0) = uyx(t,L) =0, 0<t<T, (2)

and two-point nonlocal boundary conditions

Qi(u) =u(0,x) —u(T,x) = ¢(x), 0<x<IL,
Qo(u) = ue(0,x) —ue(T,x) = P(x), 0O <L,

where T > 0,L > 0, a,b,c € R, moreover b? < 4a?c, ¢ and ¥ are given functions.

Note that many problems about vibrations of beams and platens in structural mechanics
lead to higher order differential equations than equation of rod [1,2, 10, 13]. In particular, the
equation (1) of fourth order can model the dynamic response of homogeneous beam on an
elastic foundation with axial loading [3].

Below, we use the following functional spaces:

H; = H,[0,L], where g € R, is the Sobolev space of all trigonometric series ¢(x) =

(3)

1/2
Y. ¢rsin % with the norm plla, = < y k2‘7|q)k|2> ;
keIN kelN

C"([0, T|;Hy), n € Z, is the space of all series

Z ug(t) sin = km‘
kelN

where u; € C"[0,T], k € N, with the norm

2

2 kmx
u . max u Sll’l .
H HCn([O,T],Hq Z tE[O T] H kg\l k L H,

A function u = u(t, x) from C?(|0, T] ;Hy) is called a solution of the problem (1)—(3), if it
satisfies conditions

IP)llc2orymy) =0 Q1) = ¢lln, =0, [|Q2(u) = ¢llu, , =0
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2 THE CONDITIONS OF UNIQUENESS OF THE SOLUTION

We seek a solution of the problem (1)—(3) in the form of a series
u(t,x) = Y ug(t) sin Agx, 4)
kelN
where Ay = ZX. Each function u(t), k € N, in (4) is a solution of the problem

ull (t) + (a®Af — bAZ + ) uy(t) =0, (5)

uk(0) = uk(T) = g, ug(0) = (T) = e, 6)
where ¢y and ¥ are the Fourier coefficients of the functions ¢ and ¥ (in the system {sin A;x},
k € IN).
The characteristic determinant Ay of the problem (5), (6) is defined by

A = 2Bk (1 — cos B T),
where B = \/az)t% —bAZ+4c, ke N.
Denote Ny = {k € N : Ay = 0}. If ¢y = 0 and ¢, = 0 for k € INp, then the solution of the
problem (5), (6) is not unique and it is defined by
uy(t) = Cyx cos Bit + Coi sin B, (7)

where Cyy, Cy are arbitrary constants, k € INp.
If k € N \ Ny, then Cyy, Cy are solutions of the homogeneous systems of linear equations

{ Cix(1 — cos BxT) — Cosin BT = 0,
C1 B sin BT + Cox(1 — cos BxT) = 0,
and functions u(t) have the form
uilt) = Bi (cos Bt — cos By (t — T)) ¢x + (sin Bt + sin By (t + T) ) iy @®
¢ 2Pk (1 — cos BiT) '
If BT # 27tm for all (k,m) € IN?, then set INg is empty and functions uy(t) are defined by
the formula (8).

Theorem 1. For uniqueness of the solution u &< C2([o, T] ;Hy) of the problem (1)—3) it is
necessary and sufficient that the following condition should be satisfied:
(forall (k,m) € N?) BT # 2mm. )
The proof follows from uniqueness of Fourier expansion of the functions with respect to
the system {sin A x}, k € IN.
Thus, if ¢ = ¢ = 0 for all k € N then from (4), (7), (8) follows that the problem (1)—(3)
has the formal solution defined by

u(t,x) = Z (Cyx cos Bt + Cop sin Bit) sin Agx

k€N,
Bi (cos Bxt — cos By (t — T)) ¢ + (sin Byt + sin By (t + T)) ¢y (10)
' k€H§\3N0 2B (1 — cos BiT) sin Agx.

If conditions (9) are satisfied then the set INj is empty and formal solution of the problem
(1)-(3) is unique and is given as follows

v Br(cos Byt — cos Bi(t — T)) px + (sin Byt +sin By (t + T) )
ullx) = kg\l 2Bk (1 — cos BiT)

sin Agx. (11)
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3 THE CONDITIONS OF EXISTENCE OF THE SOLUTION

In what follows, we assume that conditions (9) are satisfied. Then there exists a unique
solution of the problem (1)—(3), which admits a representation (11).

The existence of the solution u € C?([0, T]; Hy) of the problem (1)-(3) is associated with
the problem of small denominators, because the terms of the sequence {1 — cos T }xen In
the denominator of the formula (11), being different from zero, can rapidly approach zero if
k — —+o0. This leads to a divergence of series (11) in the space C?([0, T|; Hy) and therefore we
get unsolvable problem in preset scale.

If we can estimate below small denominators 1 — cos BT with certain or exponential be-
havior with respect to k, then the relevant restrictions on the functions ¢ and ¢ we can obtain
the correct solvability of the problem.

Lemma 1. For all k € IN, the following estimates hold

C1k* < By < Co, (12)
where Cy, C; are constants independent of k.
Proof. Let ry, o are complex roots of the equation a?r> — br 4 ¢ = 0. Then we get

B = —nlf —nal = @i~ 3 ~ I

1 1
2 2 2
2[5[ EAk—{—i)\k— |7’1|

a2

>
-4

5 Af = Cak

1 1
‘EA% + _Ai — |r2|

for all k > Ky, where C3 = (a/2)?(7t/L)* and K; = r~ /2L max{|r1], 2|}
If k < Ky, then B2 > C4k*, where Cy = II('IllI? {B2k~*}. Thus, By > C1k?, for all k € N, where
<K

C = min{\/C_, \/C_4}

Similarly, we obtain the estimate from above
B2 < a*Ap + |b|Af + A} < Csk?,
where Cs = (112 + |b| + c) (%)4. Therefore, B < Cok?, where Cy = /Cs. O
Using Lemma 1, we prove existence of the solution of the problem (1)—(3).

Theorem 2. Let conditions (9) are satisfied and there exist numbers C¢4 > 0 and v € R such
that inequality
|1 — cos BiT| > Cek™ 7 (13)

is fulfilled for all (except finitely many numbers) k € N. If ¢ € Hy (14 and € Hyyq 12,
then exists a unique solution u € C2([0, T}; H;) of the problem (1)<3), which continuously
depends on functions ¢ and ¢, i.e.,

I

el ompy < G (el o+ 1l )

where Cy is a constant independent of k.
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Proof. From (8), (12), (13), we obtain the estimates

W00 < _ CoChR 2 i | + Chi¥
k B C1C6k2 7

< Gk (il + Iyl ),

3
forj € {0,1,2}, where Cg = %
In view of the above estimate, we obtain the estimate for norm of the solution of the prob-

lem (1)-(3):

2
: H N
. | max u ) sin Agx

| HCZ([O,T]IH'? Z:tE[OT] kg\T ¢ k i

<Y X RGO (g + )
j=0keN

2 .
=263 )" ¥ R (kg 2 1 [y )
j=0keN

< 6C3 Y R (kg2 + )
kelN

= 603 Y (R0 g 4 2 ) = o (llgly, .+ 191, ) -
keN

This completes the proof. O

4 THE METRIC ESTIMATES OF THE SMALL DENOMINATORS

In Theorem 2, the condition (13) is imposed axiomatically. Now we study the conditions of
validity of the inequalities (13).

To this end, we use the following assertion. Let meas A is the Lebesgue measure of a mea-
surable set A.

Lemma 2 (Borel-Cantelli [4]). Let { Ax}xen be a countable collection of measurable sets such

that ), meas Ay < oo. Then the set of points that belongs to an infinite number of the sets Ay
keN
has zero Lebesgue measure.

Lemma 3 ([16]). Let f € Cl[t1,to]. If |f'(t)| > 6 > O forall t € [t,t,], then
2¢
meas{t € [t1,tp] 1 |f(t)] < e} < 5

where ¢ > 0.

4.1 The estimates in terms of coefficients a, b, c.

Leta € [a1,a3],0 < a; < ap, and b, c are arbitrary fixed numbers in (1).

Theorem 3. For almost all (with respect to Lebesgue measure in R) numbers a € [ay,a;] in-
equality
|1 — cos By T| > 2k~ 7 (14)

is fulfilled for all (except finitely many numbers) k € IN and y > 0.
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Proof. Since 1 — cos BxT = 2 sin? 5 k=, it follows that establishment of estimate (14) is reduced

to establishment of estimate underneath for sequence

fr(a) = smﬁL k e N,

where B = Bi(a) = \/az)\% —bAZ+c,a € [ay,a2].
For every fixed k € IN we introduce the set Ay = {a € [ay,a2] : |fi(a)] <k7%,6 > 0}. Let A

denote the set of numbers which are infinite number of sets Ay, k € IN. We find the estimate
for measure of set A;: fork > 1,

/ al )\AI% ia2 ﬁkl a1 )\AI% — M ( ) / 2
= > 20 > 20
’fk(g)’ ] 1 —sin B 1—k C k2 1—2- Cgk

where Cy = %( ) V1—2-20 > 0. Hence, for every k > 1, |f/(a)| > Cok®. Then for every

k > 1, by Lemma 3, we obtain the estimate for measure of set Ay as follows

2k% 2
Cok? - C9k2+9'

meas Ay <

For fixed 0 > 0, series ) meas Ay is majorized by the convergent series C Z k2 —5. Then
k>1
from Lemma 2 we conclude that Lebesgue measure of the set of points a € [al,az] which

contained the infinite numbers of sets Ay, is equal to zero.
Thus, meas A = 0. So, for a € [ay,a3]\ A there exists number k = K(a), that the estimate
|fe(a)| > k=% isvalid forall k > K(a) and # > 0. Then |1 — cos B;T| > 2k~7, where y = 20. [

Theorem 4. For almost all (with respect to Lebesgue measure in R) numbers a € [a1,a;] con-
ditions (9) are fulfilled.

Proof. Let us consider the set By = {a € [a1,ap] : cos Bx(a)T = 1}, for fixed k. Since By(a) =
\/ a?A} — bAZ + ¢, we have

2
A —bA2 4 = (2%’"> . meN. (15)

Since equation (1) is hyperbolic, we conclude that equation (15) can not have more than two
real roots relatively variable a for fixed k.
Let B be the set of roots of the equation (15). Obviously, that

By = U B/', measBj < Z meas B}'.
melN melN

Since meas B} = 0 we conclude that By = 0. We introduce the set

B= {a € lay,a2) : [ (1 —cosBy(a)T) = O}.

keIN

Aswellas B= |J By, it follows that meas B = 0.
keIN
Therefore, By T # 27tm, m € N, for almost all a € [aq, ap]. O
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Corollary 1. For almost all (with respect to Lebesgue measure in R) numbers a € [a1,a;],
inequality
|1 — COS ﬁkT| > Clok_’y, Ci0 >0, (16)

holds fory > 0 and k € IN.

Proof. 1f a € [a1,a3]\ (A U B) then from Theorems 3 and 4 we obtain

|1 —cos By T| >2k7, k> K(a), (17)
. . |1 —cospT
— i - TR
|1 — cos B T| >k kg}ga) = ' (18)
>Cik™" >0, k< K(ll) (19)

Thus, |1 — cos By T| > Cy0k™7, where C1p = min{2, C11}, ¥ > 0. Note that constant C1yp depends
ona. O

Theorem 5. For almost all (with respect to Lebesgue measure in R) numbers b € [by, by] in-
equality
’1 — COS ‘BkT‘ > Cl_f)_k_ly

is fulfilled for oy > 2 and all k € IN, where Cy; is a constant independent of k.

Theorem 6. For almost all (with respect to Lebesgue measure in R) numbers ¢ € [c1,¢p] in-
equality
|1 — cos BxT| > Ci3k™ 7

is fulfilled for oy > 6 and all k € IN, where Cy3 is a constant independent of k.

4.2 The estimate in terms of parameter T.

Lemma 4 ([12]). Let ®(k) is bounded sequence of real numbers. Then for almost all (with
respect to Lebesgue measure in R) numbers d > 0 inequality

1
‘k’1+0'+8’

B md
k|

‘CD(k)

where(0 < & < 1,0 > 0, has no more than a finitely many integer solutionsink # 0 and m # 0.
Theorem 7. For almost all (with respect to Lebesgue measure in R) numbers T > 0 inequality
11— cos B T| > 2T%k "

is fulfilled for oy > 2 and all (except finitely many) numbers k € IN.

Proof. Since 1 — cos BT = 2sin® B and |siny| > 2|y| for |y| < Z, we can apply Lemma 4.
Then

2

_ opa | Pr _ 2m

2> 2T2k4 272
Km  Tk2

= |k[2G+e) = jet2e’

8
|1 — cos By T| > 3

T
5k§ — m

where m € N such that |8t — mm| < Z,0<e <1,y =2+42¢>2.
Thus, |1 — cos B T| > 2T%k~7, for v = 2(6 +¢) > 2 and all (except finitely many) numbers
k € IN. O
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Theorem 8. For almost all (with respect to Lebesgue measure in R) numbers T > 0 condition
(9) is fulfilled.

Corollary 2. For almost all (with respect to Lebesgue measure in R) numbers T > 0 inequality

|1 — cos BiT| > C4k™7

is fulfilled for vy > 2 and all numbers k € IN, where Cy4 is a constant independent of k.

Corollary 3. If ¢ € Hyy 12 and ¢ € Hyyp, where p > 2, then for almost all (with respect to
Lebesgue measure in R) numbers a € [a;, a;) there exists a unique solution u € C([0, T}; H,)
of the problem (1)—(3).
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B obaacti D = {(t,x) : t € (0,T),x € (0,L)} AOCAIAXEHO KpaloBy 3aAauy AASI PIBHSIHHS PyXY
OAHOPIAHOI eAaCTMUIHOI 6aAKM

up(t,x) + azu””(t, x) + buyx(t, x) + cu(t,x) =0,
aea,b,c €R,b? < 4a%c, 3 HEAOKAABHVMU ABOTOUKOBUMU yMOBaMM
u(0,%) = u(T,x) = p(x), up(0,x) — us(T,x) = P(x)

i AokarbHVMYU KpartoBumy ymoBaMut 4 (t,0) = u(t, L) = uyx(t,0) = uxy(¢, L) = 0. Po3s’si3nicTs miei
3aAaui MOB’s13aHa 3 MPOOAEMOIO MaAMX 3HAMEHHMKIB, AAST OLIHKM 3HM3Y SIKMX 3aCTOCOBYETHCSI Me-
TPMIHMIA mAXiA. AAST MavbKe BCix (cTOCOBHO Mipu Aebera) mapameTpiB 3aAadi BCTAHOBAEHO YMOBH
PO3B’sA3HOCTI 3aAaui B mpocTopax Coboaesa. 3okpema, sxmo ¢ € Hypi2i ¢ € Hyip, a6 p > 2,
TO AASI MaiiKe Beix (cTocoBHO Mipu Aebera B R) uncen a icHye eayHmit poss’sizox u € C2([0, T]; Hy)
3apaui.

Kntouoei cnosa i ppasu: HeaOKaAbHa KparioBa 3aAava, OAHOPiAHA 6aaKa, MaAMit 3HAMEHHNK, Mipa
Aebera, METpUYHMIL HAXIA,
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KACHANOVSKY N.A.

ON WICK CALCULUS ON SPACES OF NONREGULAR GENERALIZED FUNCTIONS
OF LEVY WHITE NOISE ANALYSIS

Development of a theory of test and generalized functions depending on infinitely many vari-
ables is an important and actual problem, which is stipulated by requirements of physics and math-
ematics. One of successful approaches to building of such a theory consists in introduction of spaces
of the above-mentioned functions in such a way that the dual pairing between test and generalized
functions is generated by integration with respect to some probability measure. First it was the
Gaussian measure, then it were realized numerous generalizations. In particular, important results
can be obtained if one uses the Lévy white noise measure, the corresponding theory is called the
Lévy white noise analysis.

In the Gaussian case one can construct spaces of test and generalized functions and introduce
some important operators (e.g., stochastic integrals and derivatives) on these spaces by means of a
so-called chaotic representation property (CRP): roughly speaking, any square integrable random vari-
able can be decomposed in a series of repeated Itd’s stochastic integrals from nonrandom functions.
In the Lévy analysis there is no the CRP, but there are different generalizations of this property.

In this paper we deal with one of the most useful and challenging generalizations of the CRP in
the Lévy analysis, which is proposed by E. W. Lytvynov, and with corresponding spaces of nonreg-
ular generalized functions. The goal of the paper is to introduce a natural product (a Wick product)
on these spaces, and to study some related topics. Main results are theorems about properties of the
Wick product and of Wick versions of holomorphic functions. In particular, we prove that an oper-
ator of stochastic differentiation satisfies the Leibniz rule with respect to the Wick multiplication. In
addition we show that the Wick products and the Wick versions of holomorphic functions, defined
on the spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s
generalization of the CRP, coincide on intersections of these spaces.

Our research is a contribution in a further development of the Lévy white noise analysis.

Key words and phrases: Lévy process, Wick product, stochastic differentiation.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine
E-mail: nkachano@gmail.com

INTRODUCTION

Development of a theory of test and generalized functions depending on infinitely many
variables (i.e., with arguments belonging to infinite-dimensional spaces) is an important and
actual problem, which is stipulated by requirements of physics and mathematics (in particular,
of the quantum field theory, of the mathematical physics, of the theory of random processes).
A successful (but, of course, not the only) approach to building of such a theory consists in
introduction of spaces of the above-mentioned functions in such a way that the dual pairing
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between test and generalized functions is generated by integration with respect to some prob-
ability measure. First it was the Gaussian measure, the corresponding theory is called the
Gaussian white noise analysis (e.g., [7,19,33,35,37]), then it were realized numerous generaliza-
tions. In particular, important results can be obtained if one uses the Lévy white noise measure
(e.g., [10,11,38]), the corresponding theory is called the Lévy white noise analysis.

In the Gaussian white noise analysis one can construct spaces of test and generalized func-
tions and introduce some important operators (e.g., stochastic integrals and derivatives) on
these spaces by means of a so-called chaotic representation property (CRP). This property consists,
roughly speaking, in the following: any square integrable random variable can be decomposed
in a series of repeated It6’s stochastic integrals from nonrandom functions (see, e.g., [39] for
a detailed presentation). In the Lévy white noise analysis there is no the CRP (more exactly,
the only Lévy processes with the CRP are Wiener and Poisson processes) [44]; but there are
different generalizations of this property: It6’s generalization [21], Nualart-Schoutens’ gener-
alization [40, 41], Lytvynov’s generalization [38], Oksendal’s generalization [10, 11], etc. The
interconnections between these generalizations are described in, e.g., [4, 10, 11, 29, 38, 43, 45].
Now, depending on problems under consideration, one can select a most suitable generaliza-
tion of the CRP and construct corresponding spaces of test and generalized functions.

In this paper we deal with one of the most useful and challenging generalizations of the
CRP in the Lévy analysis, which is proposed by E. W. Lytvynov [38] (see also [9]). The idea
of this generalization is to decompose square integrable with respect to the Lévy white noise
measure random variables in series of special orthogonal functions (see Subsection 1.2), by
analogy with decompositions of square integrable random variables by Hermite polynomials
in the Gaussian analysis (remind that the last decompositions are equivalent to decompositions
by repeated stochastic integrals). In a sense, the most natural spaces that can be constructed
using Lytvynov’s generalization of the CRP, are spaces of reqular test and generalized func-
tions [25]. In a moment these spaces are well studied. In particular, the extended stochastic
integral and the Hida stochastic derivative on them are introduced and studied in [14, 25],
operators of stochastic differentiation — in [12, 13, 16], some elements of a Wick calculus —
in [15]. But, as in the Gaussian analysis, in connection with some problems of the mathe-
matical physics and of the stochastic analysis (in particular, of the theory of stochastic equa-
tions with Wick-type nonlinearities), it is necessary to introduce into consideration so-called
spaces of nonregular test and generalized functions in terms of Lytvynov’s generalization of the
CRP [25], and to study operators and operations on these spaces. Note that, as distinct from
the Gaussian analysis, now the spaces of regular generalized functions are not embedded into
the spaces of nonregular generalized functions, and, accordingly, the spaces of nonregular
test functions are not embedded into the spaces of regular test functions. Moreover, one can
widen the extended stochastic integral from the space of square integrable random variables to
the spaces of nonregular generalized functions, and, accordingly, to restrict the Hida stochas-
tic derivative and the operators of stochastic differentiation to the spaces of nonregular test
functions; but the extended stochastic integral cannot be naturally restricted to the spaces of
nonregular test functions, and, accordingly, it is impossible to widen in a natural way the Hida
stochastic derivative and the operators of stochastic differentiation to the spaces of nonregular
generalized functions. Therefore it is necessary to introduce and to study natural analogs of
the above-mentioned operators on the corresponding spaces. The stochastic integrals, deriva-
tives, operators of stochastic differentiation, and their analogs on the spaces of nonregular test
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and generalized functions are studied in detail in [25,30, 31]. The goal of the present paper is
to make the next natural step — to introduce a natural product (a Wick product) on the spaces
of nonregular generalized functions, by analogy with the Gaussian analysis [34] and with the
Lévy analysis on the spaces of regular generalized functions [15], and to study some related
topics (Wick versions of holomorphic functions, an interconnection between the Wick calculus
and the operators of stochastic differentiation). Main results of the paper are theorems about
properties of the Wick product and of the Wick versions of holomorphic functions. In partic-
ular, we prove that, as in the regular case, the operator of stochastic differentiation is a differ-
entiation (satisfies the Leibniz rule) with respect to the Wick multiplication. In addition we
show that the Wick products and the Wick versions of holomorphic functions, defined on the
spaces of regular and nonregular generalized functions, constructed by means of Lytvynov’s
generalization of the CRP, coincide on intersections of these spaces.

Note that some results of the paper can be transferred to weighted symmetric Fock spaces,
by analogy with [32]. This gives an opportunity to extend an area of possible applications
of these results. In particular, one can transfer them to any spaces isomorphic to the above-
mentioned Fock spaces.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a probability triplet connected with L, convenient for our consider-
ations; then we describe Lytvynov’s generalization of the CRP; and construct a nonregular
rigging of the space of square integrable random variables (the positive and negative spaces
of this rigging are the spaces of nonregular test and generalized functions respectively). The
second section is devoted to the Wick calculus: in the first subsection we introduce and study
the Wick product and the Wick versions of holomorphic functions on the spaces of nonregular
generalized functions; in the second subsection we consider a question about an interconnec-
tion between Wick calculuses in the regular and nonregular cases; in the third subsection we
study an interconnection between the Wick calculus and the operator of stochastic differentia-
tion.

1 PRELIMINARIES

In this paper we denote by || - ||y or | - |y the norm in a space H; by (-,-)y the real, i.e.,
bilinear scalar product in a space H; and by (-, -) iy or ((-, -)) iy the dual pairing generated by the
scalar product in a space H.

1.1 A Lévy process and its probability space

Denote R, := [0, +00). In this paper we deal with a real-valued locally square integrable
Lévy process L = (Ly),ecr, (a random process on R ; with stationary independent increments
and such that Ly = 0) without Gaussian part and drift. As is well known (e.g., [11]), the
characteristic function of L is

E[el1] = exp [u /]R(eiex -1- i0x)v(dx)] , (1)

where v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B de-
notes the Borel c-algebra; E denotes the expectation. We assume that v is a Radon measure
whose support contains an infinite number of points, v({0}) = 0, there exists ¢ > 0 such that
[ X2 lu(dx) < oo, and [ x*v(dx) = 1.
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Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [8];
see also Subsection 1.3). Let D’ be the set of linear continuous functionals on D. For w € D’
and ¢ € D denote w(¢) by (w, ¢); note that actually (-,-) is the dual pairing generated by
the scalar product in the space L?(IR.) of (classes of) square integrable with respect to the
Lebesgue measure real-valued functions on R [8]. The notation (-, -) will be preserved for
dual pairings in tensor powers of the complexification of a rigging D’ D L?>(R;) D D.

Definition 1. A probability measure u on (D',C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

{09 (o) = / ip(u)x _q _j duv(d €D 2
L) =exp [ [ (e ipwx)du(d)], gD, @
is called the measure of a Lévy white noise.

The existence of y follows from the Bochner-Minlos theorem (e.g., [20]), see [38]. Below we
assume that the o-algebra C(D") is completed with respect to .

Denote by (L?) := L2(D’,C(D'),u) the space of (classes of) complex-valued square in-
tegrable with respect to y functions on D’ (in what follows, this notation will be used very
often). Let f € L?(R;) and a sequence (¢; € D)ien converge to f in L?(R;) as k — oo
(as is well known (e.g., [8]), D is a dense set in L?(IR.)). One can show [10, 11,29, 38] that
(o, f) := (L?) — kli_>r£10<o, @) is well-defined as an element of (L?).

Denote by 1, the indicator of a set A. Put 1)) = 0 and consider (o, 1g,)) € (L?), u € Ry.
It follows from (1) and (2) that ((o, 1[0,u)>)u cr, Can be identified with a Lévy process on the

probability space (triplet) (D', C(D’), u) (see [10,11]). So, one can write L, = (o, 1j,)) € (L?).

Remark 1. The derivative in the sense of generalized functions (e.g., [17]) of a Lévy process (a
Lévy white noise) is L (w) = (w,.) = w(-), where § is the Dirac delta-function. Therefore L'
is a generalized random process (in the sense of [17]) with trajectories from D', and y is the
measure of L in the classical sense of this notion [18].

Remark 2. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy
measure v is a point mass at 1, i.e., if for each A € B(R) v(A) = 61(A). This measure does not
satisfy the conditions accepted above (the support of §; does not contain an infinite number of
points); nevertheless, all results of the present paper have natural (and often strong) analogs
in the Poissonian analysis. The reader can find more information about peculiarities of the
Poissonian case in [29], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

Denote by ® the symmetric tensor multiplication, by a subscript C — complexifications of
spaces. Set Z, := INU {0}. Denote by P the set of complex-valued polynomials on D’ that
consists of zero and elements of the form

Ny -
flw) = Ll fM), we D, f e D", Ny € Zs, f) £0,
n=0
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here Ny is called the power of a polynomial f; (w®0, fO)y .= f0) ¢ Dgo := C. The measure y
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (2) and
properties of the measure v, see also [38]), then P is a dense set in (Lz) [42]. Denote by Py,
n € Z., the set of polynomials of power smaller or equal to 1, by P, the closure of P, in (L?).
Letforn e NP, := P, S P,_1 (the orthogonal difference in (Lz)) Py := Py. Itis clear that

(1% = & P, .
n=0
Let ") € DE", n € Z,. Denote by : (0™, f()) the orthogonal projection of a monomial
(o®n, £(")) onto P,,. Let us define real, i.e., bilinear scalar products (-, -)ext on DE", 1 € Z4, by
setting for ("), ¢(") ¢ D"

(£, 8 ews = 1 [ ™, £ (@, ) (o). @
I Jpr
The proof of the well-posedness of this definition coincides up to obvious modifications with
the proof of the corresponding statement in [38].

By | - |ext we denote the norms corresponding to scalar products (4), i.e.,

|f(n) lext := (f(n)zfm)ext-

Denote by ngz , n € Z, the completions of Dg)” with respect to the norms | - |oxt. For

F® ¢ 1™ define a Wick monomial : (0®n, F(M); def (Lz)—klim :<o®”,fk(")> :, where Dg” 5
—00

ext

fk” — FM as k — oo in ngt) (the well-posedness of this definition can be proved by the
method of "mixed sequences"). One can show that : (020, F(0)): = (o®0 F(0)) = F(0) and
(0, FUY: = (o, FD) (cf. [38]). .

Since, as is easy to see, for each n € Z the set {: (o®", f()):|f(n) ¢ D¢"} is dense in Py,
the next statement from (3) follows.

Theorem 1. (Lytvynov’s generalization of the CRP, cf. [38]) A random variable F € (L?) if and

only if there exists a unique sequence of kernels F") ¢ ngt) such that

o]

=Y (o F). (5)

n=0

(the series converges in (L?)) and ||FH%L = [ |F(w)|?u(dw) = E|F]> = £ g nt|FM 2

|ext

< 00,

Remark 3. In order to consider many problems of the Lévy white noise analysis, in terms of
Lytvynov’s generalization of the CRP it is necessary to know an explicit formula for the scalar
products (-, -)ext. Such a formula is calculated in [38]; in another record form (more convenient
for some calculations) it is given in, e.g., [13, 15, 16].

Denote H := L?(R.), then H¢ = L?(R4 )¢ (in what follows, this notation will be used very

often). It follows from the explicit formula for (-, -)ext that H gxg Hc, and for n € N\{1} one
(n)

can identify 7—[®” with the proper subspace of H,.; that consists of "vanishing on diagonals"
elements (roughly speaking, such that F (n )(ul, .., uy) = 0if thereexistk,j € {1,...,n}: k #j,
but u; = u;). In this sense the space HﬁZ} is an extension of H%“ (this explains why we use the
subscript "ext" in our designations).
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1.3 A nonregular rigging of (L?)

Denote by T the set of indexes T = (73, T2), where 71 € IN, 1, is an infinite differentiable
function on IR such that for all u € Ry 1(u) > 1. Let H be the real Sobolev space on R of
order 7 weighted by the function 1, i.e., H+ is the completion of D with respect to the norm
generated by the scalar product

(o9 = (90900 + L oM w0) ia)i

here ¢l¥l and y!¥l are derivatives of order k of functions ¢ and i respectively. It is well known

(e.g., [8]) that D = pr lim H, (moreover, for any n € N D®" = prlim HY", see, e.g., [6] for
TeT TeT
details), and for each T € T H- is densely and continuously embedded into # = L?(R; ).

Therefore one can consider the chain
D'OH DHDH:DD,
where H_+, T € T, are the spaces dual of H. with respect to . Note that by the Schwartz

theorem [8] D’ = ind lTim H_+ (it is convenient for us to consider D’ as a topological space
TE

with the inductive limit topology). By analogy with [28] one can easily show that the measure
u of a Lévy white noise is concentrated on 1 _z with some T € T, i.e., u(H_z) = 1. Excepting
from T the indexes T such that y is not Concentrated on H_ ., we will assume, in what follows,
that foreacht € T u(H_-) = 1.

Denote the norms in H, ¢ and its tensor powers by | - |, i.e., for f(”) € H?g, neZ.,
f] = \/(f("),]T),H@n (note that ’H®% = Cand |[fO|, = |fO)).

The next statement easily follows from results of [25].

Lemma 1. There exists T € T such that for eachn € Z the space ”HT, c Is densely and con-
(") Moreover, for all f(n) HS}: 2 < e f2,,

ext”

tinuously embedded into the space H,.
where ¢ > 0 is some constant.

ext

It follows from this lemma that if for some T € T the space H is continuously embedded
into the space H, then for each n € Z the space ’H%g is densely and continuously embedded

into the space #") and there exists ¢(t) > 0 such that for all f(") ¢ H?E

ext’
F o < mle(0)" | f[3 (6)

In what follows, it will be convenient to assume that the indexes T such that H. is not contin-
uously embedded into Hs, are removed from T.

Accept on default ¢ € Z4 and T € T. Denote Py := {f = ZHNLO :(o®n, f)y . f(n) ¢
DE", Ny € Zy } C (L?). Define real scalar products (-, )7,y on Py by setting for

Ng

Fm Lo ) = B 67h): P
n=0
min(Ng,Ng)
(fr8)ea:= 3, ()?27(f, ") :,. (7)

n=0 wC
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Let || - ||«4 be the corresponding norms, i.e., |||ty = \/(f, f)rq- In order to verify the well-
posedness of this definition, i.e., that formula (7) defines scalar, and not just quasiscalar prod-
ucts, we note that if f € Py and ||f||r; = 0 then by (7) for each kernel f(") we have |f(")|; =0
and therefore by (6) | f(")|.x¢ = 0. So, in this case f = 0in (L?).

Let (H:)q be completions of Py with respect to the norms | - |4, (H<) := prlim(H<)g,

q—0
D) := prlim (H;),. Asiseasy tosee, f € (H:), if and only if f can be presented in the form
p q y q y p
TeT,g—00
f= Z (o1, fmy:, ) H (8)
n=0
(the series converges in (H¢),), with
13,4 = 1 f1%,), = 3 (r)227[fV]2 < oo )
(He)q
n=0

(since for each n € Z 7-[®” C Hext, for 1) ¢ Hf‘?g :(0®n, f(M): is a well defined Wick
monomial, see Subsection 1 2) Further, f € (H:) (f € (D)) if and only if f can be presented
in form (8) and norm (9) is finite for each g € Z, (foreach v € T and each g € Z,).

Lemma 2. For each T € T there exists qo(T) € Z+ such that the space (H), is densely and
continuously embedded into (L?) for each q € Ngo(z) == {90(7),90(7) +1,...}.

The proof coincides up to obvious modifications with the proof of the corresponding state-
ment in the real case [25]. In view of this lemma one can consider a chain

(D) > (H-x)D(H 1) gD (L*)D(He)gD (He) D(D), TET, g €Ny,  (10)

where (H_1)—q, (H-7) = ind lim(H_)_p and (D) = ind lim (H_z)_, are the spaces dual

q'—o0 TeT,q'—o0

of (H+)g, (H<) and (D) with respect to (L?).

Definition 2. Chain (10) is called a nonregular rigging of the space (L?). The positive spaces
of this chain ()4, (H+) and (D) are called Kondratiev spaces of nonregular test functions.
The negative spaces of this chain (H_+)_,, (H-<) and (D’) are called Kondratiev spaces of
nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces (%) ;. Let us consider chains

D" > HM S HE) S HEE S DEM, (1)

ext

m e Zy (form = 0D®0 = ’H?% =1

ext

- 7—[(0) rc = D¢ © = = C), where HS’?{C and D‘{:(’”) =
(m)

ind lim 7-[( )C are the spaces dual of ’H®g and D%m with respect to H,., . In what follows, we

TeT

denote by (-, -)ext the real dual pairings between elements of negative and positive spaces from
chains (11), these pairings are generated by the scalar products in H gxt The next statement

follows from the definition of the spaces ()4 and the general duality theory (cf. [25,28]).
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Proposition 1. There exists a system of generalized functions

{ <O®m1Fe(xt)>' € (% ) | ext G H( T)C’ me Z+}

such that
1) for Fe(;:) € Héxt) C 7-[( ) : (o ®m,Fe(xt)>: is a Wick monomial that is defined in Subsec-
tion 1.2;

2) any generalized function F € (H )4 can be presented as a series
F= Z :<o®m’Fe(;’:)> v e(xt) < H( T)C’ (12)
m=0

that converges in (H_) 4, i.e,
”FH?;T,*q : HFHZ 2 g ‘ ext (m) OO, (13)
(H— Z

and, vice versa, any series (12) with finite norm (13) is a generalized function from (H_:) 4
(i.e., such a series converges in (H_¢)4);

3) the dual pairing between F € (H_1)_4 and f € (H.), that is generated by the scalar
product in (L?), has the form

<<F/f>>(L2) = Z m!<Fe(3Zl)rf(M)>E’xi’r (14)
m=0
where Fe(xt) € 7-[(_"2@ and f\" () 7-[®C are the kernels from decompositions (12) and (8) for F

and f respectively.

Itisclear that F € (H_:) (F € (D)) if and only if F can be presented in form (12) and norm
(13) is finite for some g € IN, () (for some T € T and some g € N ().

2 ELEMENTS OF A WICK CALCULUS

In this paper we construct a Wick calculus on the spaces (#_+); but, as is easy to verify, all
our results hold true up to obvious modifications on the space (D’).

21 A Wick product and Wick versions of holomorphic functions

One can introduce a Wick product and Wick versions of holomorphic functions on (#_+)
by different ways. We use the most natural and convenient from technical point of view clas-
sical way, based on a so-called S-transform.

Definition 3. Let F € (H_). We define an S-transform (SF)(A), A € D¢, as a formal series

o0

(SEY(A) == Y (B, A8m), = FU) Z A e, (15)

m=0 m=1

where F™) € H" )C are the kernels from (12) for F. In particular, (SF)(0) = F9 s1=1.

ext ext”’
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Remark 4. As is easily seen, each term in series (15) is well-defined, but the series can di-
verge. However, the last is not an obstruction in order to construct the Wick calculus (cf. [15]);
moreover, it is easy to obtain a simple sufficient condition under which series (15) converges.
Namely, by the generalized and classical Cauchy-Bunyakovsky inequalities

(SHN| < X 1 Ly M= Y @ 2IER o ) (2 2IAR)
m=0 -

m=0 -
<[ X 277 Fy ‘im Y 27 AR = ([Pl —q—qy [ ) 27" |A[Z"
m=0 -7C Y m=0 m=0

(see (13)). Therefore series (15) converges if F € (H_)_5 and A € Dc issuch that |A|; < 27172,
Note that the last inequality is true if and only if a function f) (o) := Yoo L (0®™ A®™M): €
(H<)g, in this case |fyllxq = \/Zﬁzo 29M|A|2" < oo (see (9)). Now one can define the S-
transform of F by the formula (SF)(A) = ((F, fa))(12) (cf. [34]), see (14). Note that in the
Gaussian (and Poissonian) analysis fy (o) = exp®{(o,A)}, where exp® is a Wick version of
the exponential function (e.g., [34]), and therefore f) is called a Wick exponential; in the Lévy
analysis this representation for f, does not hold.

Definition 4. ForF,G € (H_+) and a holomorphic at (SF)(0) functionh : C — C we define a
Wick product FOG and a Wick version h¥ (F) by setting formally

FOG := S Y(SF-SG), hO(F) := S~ h(SF). (16)

It is obvious that the Wick multiplication ¢ is commutative, associative and distributive
over a field C.

Remark 5. A function h can be decomposed in a Taylor series

(e 9]

h(u) = Y hw(u— (SF)(0))™. (17)

m=0
Using this decomposition, it is easy to calculate that

(9]

HO(F) = Y h(F — (SF)(0))", (18)

m=0

where FO" .= FO - .- OF, FO0 .= 1.

m times

Let us write out "coordinate formulas" for the Wick product and for the Wick versions
of holomorphic functions (i.e., representations of FOG and h%(F) via kernels from decom-
positions (12) for F and G and coefficients from decomposition (17) for /). We need a small
preparation: it is necessary to introduce an analog of the symmetric tensor multiplication on
the spaces 7-[(_7:),@, meZ,.

Consider a family of chains

D™ D HOM D HE S HEM S DE™, m € Zy (19)
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(as is well known (e.g., [6,8]), ’H?TC and D‘f:@m ind lTlm ’H®’”C are the spaces dual of ’H®m
¢ Te

and Dg’” respectively; in the case m = 0 all spaces from chain (19) are equal to C). Since
the spaces of test functions in chains (19) and (11) coincide, there exists a family of natural

isomorphisms Uy, : Do’:(m) — D{:@m, m € Z, such that for all i ¢ Do’:(m) and f(m) € ng

ext

<F(m) f(m)>ext <umF( )f(m)> (20)

ext 7 ext 7

(m)

It is easy to see that the restrictions of U, to .
spaces 7-[( )C and 7—[®

< are isometric isomorphisms between the

Remark 6. As we saw above, ’ngz = Hc, therefore in the case m = 1 chains (19) and (11)

coincide. Thus Uy is the identity operator on Dq’:(l) = Do’:@)l = D¢. In the case m = 0 U is,
obviously, the identity operator on C.

For Fe(xt) e " )C and Ge(xt) € 7-[(_'72@, n,me Z.y, set
e(xt) < G(Sxt) . un—&m [(uﬂpe(xt))@)(uﬂi(;e(xt))} € H(—nr_.,_g) (21)

It follows from properties of operators U, and of the symmetric tensor multiplication that
the multiplication ¢ is commutative, associative and distributive over a field C. Further, since

. (m) @m . . . .
U, : Hfr,c — H%C, m € Z, are isometric isomorphisms,

’ ext ext ‘ (n+m) = ‘(unFe(xt)>®(umGe(Tt)>‘H®nEm
e (22)
< |u” ext |’H®" |u"1 ext | | ext | |Gext | "1C'

T,

Finally, by (20) and (21) for A € D¢

<F( ) )\®n>ext<G( )A®m> = <un1:( n) A®”)<umG( )A®m>

ext”’ ext 7 ext’ ext ’

<(un1:( )) ® (UmG( )) Ay <(un1:( ))®(UMG( )) A@n+m)

ext ext ext ext

<unim[(unF( ))®(UmG( ))] A®n+m> ext = < e(xt)OG( ) A@n—l—m)ext.

ext ext ext 7

Using (16), (15) and this equality, by analogy with the Meixner analysis [28] one can prove the
following statement.

Proposition 2. ForF,..., F, € (H_7)

F1<> . <>Fn — Z :<O®m, Z Fl(kl) Oee e OF’ng)> . (23)

m=0 kq,kn€Z y:
k1+~~~+kn:m

in particular, for F,G € (H_+)

(9]

FOG = Z ®m Z ext ext > (24)
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Here Fj(kj) € H(_](i),c, j € {1,...,n}, are the kernels from decompositions (12) for Fj; FR) ¢

ext
k)

H(—T,C/ ngfk) € H(f:g ), are the kernels from the same decompositions for F and G respec-

tively. Further, for F € (H{_-) and a holomorphic at (SF)(0) = F9 functionh : € — C

ext

o m
WOF)=ho+ 3 (o™ Yohn Y Fafl oo o) 25)
m=1 n=1 kl,...,knGN:
kq+-+kn=m

where F (k) S ’H(Q’C, k € Z., are the kernels from decomposition (12) for F; h, € C,n € Z,

ext
are the coetficients from decomposition (17) for h.

Remark 7. Formulas (24) and (25) can be used as alternative definitions of the Wick product
and of the Wick version of a holomorphic function respectively.

Itis clear that in order to give an informal sense to notions "the Wick product" and "the Wick
version of a holomorphic function", it is necessary to study a question about convergence of
series (23) and (25) in the spaces (H_+).

Theorem 2. 1) LetFy,...,F, € (H_1). Then F;{---OF, € (H_+). Moreover, the Wick multi-
plication is continuous in the sense that

[F10++-OF|-ri-q < fmax 2 (n + 1 YA oy [Fall ey 29

where g € N issuch thatF, ..., F, € (7—[4) (g—1)-
be holomorphic at (SF)(0). Then h®(F) € (H,T).

2) LetF € (H_1) and a functionh : C — C

Proof. 1) 1t is sufficient to prove (26), the fact that F;0 --- OF, € (H_¢) follows from this es-
timate. Let Fj(k) € H(l(;c be the kernels from decompositions (12) for F;, j € {1,...,n}; and

g € N be such that F,...,F, € (7—[, )—(q—1) (such g exists because by Schwartz’s theorem
Ho)= U (H-1)y (]N ) is defmed m Lemma 2), see, e.g., [8] for details). Using (23),
9€N g4 (z)

(13), a known estimate for a norm H Zle a H2 <p Zle |a;|? and (22), we obtain

IO - OFul2e_, = Z”’”} Y B%Yo---oFf ’Hfﬁc

ki,.kn€Z:
kq+-+kn=m
o0 m T’H*kl l’l”l*klf"'*knfz
=Y omy y .. Y Fl(kl) <>..-an(lﬁql)OF,Smiklfmfk"’l)},z}_L(m)
m=0 k1=0 kr—=0 ky_1=0 —TL
(e%) m T’H7k1 I’I”l*k17~~~fkn,2 (k) (m K
—gm 1 —ki—-- 1
<Y 2 m"m+1) Y | Y - Y FEVoeooF - \Hgmc
m=0 k=0 kp=0 ky_1=0 K
o0 m I’I”l*kl m—k1—~~—kn,2 K k
i VI DR D s T
m=0 k1=0 ko=0 ky_1=0 *TC
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m kR ) (m—ky——ky1) 2
R
<Y X X RYR g R I
k1 =0 kr—0 kn—1=0 Hoce e
1k k 9 oo m— k1 m—kl—‘“—kn,z 1k k )
qu 1!F1!k1>22 Y. o2 2\F2\<kz
*TC m=ky kp= kn—1=0 *TC
1) (11—t — oo key—-—k,y
. o—(g 1)(m ki) [k ko \j{ (mky k)
—1,C
” o0 m m—kz—‘“—kn,z 1 k k )
=COIRIP oy X Y- Y 2 s [
m=0k,=0 kyu_1=0 *TC
o ko— - —k
o= (9-1)(m—kp—++—ky_1 ]F(m 2 ot ‘2 (m—ky——kp,_1)
7TC
== CRI2 oy 1Bl ) @7)

where C(n) := maxycz, [Z_m(m +1)"1].
2) Let us establish that for some q € Z ||h®(F)|-1—; < oo, it is enough to assert that
hO(F) € (H_z). Let Fe(xt) € HQ/C, k € Z,, be the kernels from decomposition (12) for F. Since

by Schwartz’s theorem for some g € Z F € (H-1)_z, by (13) for each k we have |F, xt| ® <

| Fl ,T,,q~2‘77‘/ 2, Further, it follows from the holomorphy of h that there exists ' € Z such that

foreachn € Z. |h,| < 2‘7/”, where h;, € C are the coefficients from decomposition (17) for h.
Using these estimates, (13), (25), (22) and the estimate Y 1= C,’;;ll < 2"m=1 we obtain

k... kn€N:
ky - tkn=m

() m
e e Ve D O D . 4
m= /

kl,...,knEN:
ky+-+kp=m
2 = —qm L (k1) (kn) 2
< |h0| + Z 2 < Z |hﬂ| Z |Fext |H(k1) ) |Fext kn) )
=1 =1 kq,...kn€IN:
" " klimwizm (28)
~ 2
2 2
<o+ LR L, )
= sk €IN:
" " kl%‘r +nkn—m

2
< ol + zzq“q (z @7 |F| ") < oo,

if g € Z is sufficiently large. O

Remark 8. Let hl?](F ), N € N, be the Wick version of the N-th partial sum of decomposition
(17) for h. It follows from calculation (28) thath%(l—“) — hO(F) as N — oo in (H_z).

Remark 9. One of generalizations of the Gaussian white noise analysis is a so-called biorthogo-
nal analysis (see [1,2,5,23,24,36]) that developed actively in 90th of the last century. Its main idea
is to use as orthogonal bases in spaces of test functions so-called generalized Appell polynomi-
als (or their generalizations), in this case orthogonal bases in spaces of generalized functions
are biorthogonal to the above-mentioned polynomials generalized functions. Over time the
interest to the biorthogonal analysis went down because of the lack of interesting applications.
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But methods developed within its framework, and some its results can be successfully used
in another generalizations of the Gaussian analysis, in particular, in the Lévy analysis. For
example, the proof of Theorem 2 is adopted from the biorthogonal analysis, cf. [24].

2.2 Interconnection between the Wick calculuses in the regular and nonregular cases

In the paper [15], in particular, a Wick product and Wick versions of holomorphic functions
are introduced and studied on so-called parametrized Kondratiev-type spaces of reqular generalized
functions of the Lévy white noise analysis [15,25]. As distinct from the Gaussian or Poissonian
analysis, these spaces are not embedded into the spaces of nonregular generalized functions,
but have with the last wide intersections (for example, (L?) is a part of all these intersections).
So, it is natural to consider a question about interconnection between the Wick calculuses
on the spaces of regular and nonregular generalized functions. The answer is very simple:
actually, on the above-mentioned intersections the Wick products and the Wick versions of
holomorphic functions, introduced in [15] and in this paper, coincide. Now we’ll explain this
in detail.

Definition 5. Accept on default f € [0,1]. Parametrized Kondratiev-type spaces of regular

generalized functions (L?)_ g and (L?)~F can be defined as follows: (L?)_ g consists of formal

series (5) such that HFH2 = =% o(n) P2 FM 2 < oo; (L2) P = 1nd_>11m(L2),§.
l/] (e 9]

The well-posedness of thls definition is proved in [15,25]. Note that the space of square
integrable random variables (L?) = (L?) is densely and continuously embedded into each

(Lz) P and therefore into (L2)~P,

Remark 10. Let (L?) 5 , (L?)F = prlim(L?) 5 be parametrized Kondratiev-type spaces of regular

q—> 0

test functions [15,25], i.e., the positive spaces of a chain (L?)~F > (Lz):g O (L?) D (Lz)g D

(L2)P. It is not difficult to understand that (Lz)ﬁ consist of elements of form (5) such that
HF||?L2)§ = Y2 o(n)1*P211|F(") 2 - < co. By analogy one can introduce spaces (”;‘-LT)C/,3 that

consist of formal series (8) such that HfH?H ° = Y2 o ()P0 f()|2 < oo, It is possible to
T)q

study properties of these spaces and of its projective limits, to introduce and to study operators
and operations on them; such considerations are interesting by itself and can be useful for
applications. But, in contrast to the Gaussian and Poissonian analysis, in the Lévy analysis
(”HT)g ¢ (L?) if B < 1, generally speaking, so, we cannot consider (Hf)g

of test functions.

Definition 6 ([15]). For F € (L2)~F we define an S-transform (SF)(A), A € D¢, as a formal
series

with B < 1 as spaces

[ee]

Z )\®m ext = F( ) + Z (F(m)/ A®m)extz (29)

m=1

where E0" ¢ ™) are the kernels from decomposition (5) for F (cf. (15)). In particular,

ext

(SF)(0) = F©, 51 = 1.
Definition 7 ([15]). For F,G € (L?)~P and a holomorphic at (SF)(0) functionh : C — C we
define a Wick product F $G and a Wick version h? (F) by setting formally (cf. (16))

FOG := S Y(SF-SG), KO(F) := S~ n(SF). (30)
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As in the nonregular case, the Wick multiplication ¢ is commutative, associative and dis-
tributive over a field C, and the following statement is fulfilled (cf. Theorem 2).

Theorem 3 ([15]). 1) LetF, ..., F, € (L2)~P. Then £, - - - OF, € (L2)~F. Moreover, the Wick
multiplication is continuous in the sense that for any q,q' € Z such thatF, ..., F, € (Lz):g,

andg > ¢ +(1—pB)log,n+1

||F1<> T <>Fn||(L2):§ < nlqléaz)i[z_m(m + 1)n—1] HF1||(L2):§/ e ”FHH(LZ):I:,
(cf. (26)). 2) LetF € (L?)~F and a function h : C — C be holomorphic at (SF)(0). Then
hO(F) € (L?)~ L.

Remark 11. Theorem 3 can be proved with the use of "coordinate formulas" for the Wick prod-
uct and for the Wick versions of holomorphic functions on the spaces (L?)~F [15]. Formally
these formulas coincide with the corresponding formulas in the nonregular case, see Proposi-
tion 2. Actually, this coincidence is not accidental: the restriction of the multiplication ¢ to the
spaces H gzz ,n € Z4, is an analog of the symmetric tensor multiplication on these spaces, the
proof of this fact coincides up to obvious modifications with the proof of the corresponding

statement in the real case [31].

Comparing (15) with (29), (16) with (30), and taking into account Theorems 2 and 3, we
obtain the following statement.

Theorem 4. 1) LetFy,...,F, € (H_) N (L?)~P. Then
F1<>"‘<>Fn :Flé"'él:n S (,Hfr)m(Lz)_ﬁ-

2)LetF € (H-7)N (L?)~F and a function h : C — C be holomorphic at (SF)(0) = (SF)(0).
Then h¥ (F) = h°(F) € (H_-) N (L?)~.

2.3 Interconnection between the Wick calculus and operators of stochastic differentiation

As is well known, a very important role in the Gaussian white noise analysis and its gen-
eralizations belongs to the extended stochastic integral and to its adjoint operator — the Hida
stochastic derivative. Together with these operators, it is natural and useful to introduce and to
study so-called operators of stochastic differentiation, which are closely related with the stochastic
integral and derivative. Roughly speaking, one can understand the stochastic differentiation as
a "differentiation" with respect to a "stochastic argument", i.e., the operator of stochastic differ-
entiation acts on an orthogonal decomposition of a (generalized) random variable in common
with an action of the differentiation operator on Taylor’s decomposition of a function. The op-
erators of stochastic differentiation can be used, in particular, in order to study some proper-
ties of the extended stochastic integral and of solutions of stochastic equations with Wick-type
nonlinearities.

As is known [3], in the Gaussian analysis the operator of stochastic differentiation of order
1 is a differentiation (i.e., satisfies the Leibniz rule) with respect to the Wick multiplication.
This important for applications property holds true in a Gamma-analysis (i.e., a white noise
analysis connected with a so-called Gamma-measure) [22], in a Meixner analysis [26,27], and
in the Lévy analysis on the spaces of regular generalized functions [15]. But, in contrast to the
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Gaussian case, in the Lévy analysis (in the same way as in the Gamma- and Meixner analysis)
the operators of stochastic differentiation (in the same way as the Hida stochastic derivative)
cannot be naturally continued from (L?) to the spaces of nonregular generalized functions,
see [30] for details. Nevertheless, one can introduce on these spaces natural analogs of the
above-mentioned operators. These analogs are introduced and studied (in a real case) in [30].
They have properties similar to properties of "classical" operators of stochastic differentiation
[13], and can be accepted as operators of stochastic differentiation on the spaces of nonregular
generalized functions. Now we’ll recall the definition of such operator of order 1, and will
show that this operator satisfies the Leibniz rule with respect to the Wick multiplication ¢.

Let Fe(xt) € 7-[(_"2@ m € N\{1}, g € Hrc. We define a generalized partial pairing
1)

<Fe(xt),g>gxt € H(_n;j by setting for any f("—1) ¢ H?g_l

(F), &Y ext, F D)oy = (ELD, g®F 1) oy, (31)

Since by the generalized Cauchy-Bunyakovsky inequality

[(Fert 8BS el < IF |y 188" e < 1 yon Iglelf "l
this definition is well posed and

[(Fet 8hextlyyon 1 < 1By Ly I8l (32

7‘[

Definition 8. Let g € H,c. We define (the analog of) the operator of stochastic differentiation
(Do)(8) : (H-—x) = (H-—x) (33)

as a linear continuous operator that is given by the formula
Z m: (o1, e(xt)/g>€Xt> (34)

where E™) ¢ HS’?{C are the kernels from decomposition (12) for F € (H_+).

ext

The proof of the well-posedness of this definition is based on estimate (32) and coincides
up to obvious modifications with the proof of the corresponding statement in a real case [30].
Let us define a characterization set of the space (H_+) in terms of the S-transform, setting
Br := S(H_¢) = {SF : F € (H_¢)} (cf. [15]). It is clear that B is a linear space, which

consists of formal series Zﬁz()(Fe(ﬁ), .om) ot (see (15)) with the kernels e(xt) € 7-[( ) ¢ satisfying

a condition: there exists g € N, () € Z such that } 72~ qm| ot |2 m < oo.lt follows from
77 C
Definition 4 and Theorem 2 that B is an algebra with respect to the pointwise multiplication.

Moreover, if we introduce on B; a topology induced by the topology of (H_+), then the S-
transform becomes a topological isomorphism between a topological algebra (H_-) with the
Wick multiplication and a topological algebra B, with the pointwise multiplication.
Denote by
de:Br — By, g€ Heg, (35)
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a directional derivative, i.e., for (SF)(-) = Yo _o(F (m) P 0<UmF(m) &My e By (see

ext / ext /
(15), (20); F € (H_<), F, F™ ¢ 7-[( )C are the kernels from decomposition (12) for F)

7 “ext
dg(SF)(') = Z m um e(xt)'g® om= 1 Z m ext 'g® ®m_1)>3”

m=1 m=1 (36)
= Z m gxt Ig extrs” ®m*1>ext - ( (DP)(g))() c BT

wnn

(see (20), (31), (34) and (15)). Aswe see, directional derivative (35) is the image on B of operator
of stochastic differentiation (33) under the S-transform (in particular, (35) is a linear continuous
operator). Vice versa, operator of stochastic differentiation (33) is a pre-image of directional
derivative (35) under the S-transform, i.e., forall F € (H_) and g € H.¢

(DF)(g) = S™'dySF € (H_<). (37)
Now we are ready to prove the main result of this subsection.

Theorem 5. Operator of stochastic differentiation (33) is a differentiation (i.e., satisties the
Leibniz rule) with respect to the Wick multiplication, i.e., forall F,G € (H_.) and g € H.¢

(D(FOG))(g) = (DF)(8)0G + FO(DG)(g) € (H—)- (38)

Proof. First we note that the expressions in the left hand side and in the right hand side of
(38) belong to (H_¢), this follows from the definition of operator (33) and Theorem 2. As for
equality (38), using (37), (16), the fact that the directional derivative satisfies the Leibniz rule,
and (36), we obtain

(D(FOG))(g) = S 'dg(S(FOG)) = S 'dg(SF - SG) = S™![(d4SF) - SG + SF - (d¢SG)]
=S'[(S(DF)(g)) - SG + SF- (S(DG)(3))] = (DF)(8)0G + FO(DG)(g),
which is what had to be proved. O

Corollary. Let F € (H_1),§ € Hic,and h : C — C be a holomorphic at (SF)(0) function.
Then

(DR (F))(g) = W (F)O(DF)(g) € (H_x), (39)

where h'¢ is the Wick version of the usual derivative of a function h.

Proof. Using (38), one can prove by the mathematical induction method that for each m € Z

-1
(D(F = (SF)(©0) ") (g) = m(F = (SF)(0)) " O(DF)(g). (40)
Further, let h%(F ), N € N, be the Wick version of the N-th partial sum of decomposition

(17) for h, i.e., hl?,(F) = YN _ohm(F = (SF)(0)) O see (18). It follows from the linearity of the
operator D, (40), Theorem 2 and Remark 8 that

(DK, (F 2 un (D (F = (SF)(0)) ") (8)

Om—1
= 3 hm(F — (SF)0) " 'O(DF)(g) = HO(FO(DF)(g)
m=1
in (H_:). On the other hand, it follows from Remark 8 and the continuity of the operator
(Do)(g) on (H—<) that (Dh,(F))(g) — (Dh®(F))(g) as N — oo in (H_¢). Therefore equality
(39) is valid. O
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In a forthcoming paper we’ll consider an interconnection between the Wick calculus and
stochastic integration on the spaces of nonregular generalized functions, and give examples

of integral stochastic equations with Wick-type nonlinearities.
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Kauanoscexmit M.O. [Tpo Bikiscvke uuicieHHS HA NPOCMOpax HepeeyriapHUX Y3azansvHeHux QyHKyiil aHa-
1i3y 6inozo wymy Aesi // KapmaTceki MaTeM. my6a. — 2018. — T.10, Ne1. — C. 114-132.

Po3BuToK Teopii OCHOBHMX i y3araabHeHMX (PYHKIIIN, IO 3aAeXaTh Bia HECKiHUEHHOI KiABKOCTi
3MIHHMX, € BaXKAMBOIO Ta aKTYaABHOIO 3apa4elo, IKa 06yMOBAeHa oTpebamu (piskm i MaTeMaTIKIL.
OaAyH 3 yCIminmHmX mAXOAIB A0 TO6YAOBM TaKoi TeOpii MoAsITae y BBeA€HHI IPOCTOPIB BUIIIe3raAaHIX
YHKIII TaKMM UMHOM, IO AyaAbHe CIIAPIOBAHHS MiX OCHOBHVIMI i y3araAbHeHMMM (PYHKIiSIMI
IIOPOAKYEThCSI iHTETPYBaHHSM 3a A€SIKOIO IMOBipHiCHOIO Mipoo. Crodarky e 6yaa raycciBcbka
Mipa, 3roa0oM 6yAM 3po6AeH] UMCAEHH] y3aTaAbHEHHsI. 30KpeMa, BaKAMBi pe3yAbTaTy MOXXHA OTPU-
MaT, BUKOPMCTOBYIOUM Mipy 6inoro mymy Aesi, BiATIOBiAHA TeOpist Ha3sMBAETHCS AHANI30M 0i1020
wymy Aesi.

Y raycciBcbKOMY BUMITaAKy MOXKHa 6yAyBaTV IPOCTOPY OCHOBHMX i y3araabHeHMX (PYHKIIIA Ta
YBOAUTHU AesIKi BaXXKAUMBi omepaTopy (HapMKAaA, CTOXacTMUHI iHTerpaAM i IOXiAHI) Ha IMX IpoO-
CTOpax 3a AOIIOMOTOIO Tak 3BaHOI siacmugocnti xaomuuroeo poskaady (BXP): rpybo kaxyum, KOXHY
KBaApaTUYHO iHTETPOBHY BUIIAAKOBY BEAMUMHY MOXXHA PO3KAACTU Y PSIA MOBTOPHMX CTOXACTAYHMAX
inTerpanis ITo Bia HeBUIIaAKOBUX (PYHKLIN. Y aHaAi3i AeBi Hema BXP, are € pisHi y3araabHeHHS i€l
BAACTMBOCTI.

Y wiif cTaTTi MM MaeMO CIIPaBy 3 OAHMM 3 HaMOiABII KOPUCHUX i TIEPCIIEKTUBHMX y3araAbHEHb
BXP y ananisi AeBi, sanponioHoBaHMM €. B. AUTBMHOBIMM, Ta 3 BiAIIOBIAHMMM ITPOCTOpPaMM Hepery-
ASIPHMX y3araAbHeHVX pyHKIIi. MeToIo cTaTTi € yBecTV IpMpOAHIIL AOOYTOK (BiKiBChKMIT AOOYTOK)
Ha VX TIPOCTOPaXx, Ta BUBUMTHU AesIKi OB’ s13aHi muTanHHs. OCHOBHMMM pe3yAbTaTaMy € TEOPeMM IIPO
BAACTMBOCTI BiKiBCbKOTO AOOYTKY i BiKiBChbKMX Bepciit roroMopdpHMX pyHKIN. 30KpeMa, MU AOBO-
AVIMO, IIIO OIIEPATOP CTOXACTMYHOTO AVicpepeHIIiIOBaHHS 3aA0BOABHSIE IIPaBMAO AelibHiIla BiAHOCHO
BiKiBcbKOTO MHOXeHHsI. KpiM Toro, Mm moxasyemo, Io BiKiBChbKi AOGYTKM i BikiBchKi Bepcii roao-
MopdHMX (PyHKII, BU3HaUeH] Ha POCTOpaxX PEryAsIPHIX i HepeTyASpHUX y3ararbHeHNX (PYHKITI,
o6y AOBaHMX 3a AOIIOMOTOI0 AMTBMHIBCBKOTrO y3araabHeHHs BXP, criBrmaaaioTh Ha mepeTmHaX X
MPOCTOPiB.

Harri AocAiaXeHHS € BHECKOM Y TTIOAQABIIINIA PO3BUTOK aHaAi3y 6iroro mymy Aesi.

Kntouosi cnosa i ¢ppasu: mporec Aesi, BiKiBcbKMiT AOOYTOK, cTOXaCTHUHe AMdpepeHIifoBaHHS.
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WIMAN'’S INEQUALITY FOR ANALYTIC FUNCTIONS IN D x C WITH RAPIDLY
OSCILLATING COEFFICIENTS

Let A2 be a class of analytic functions f represented by power series of the from
f(2) = f(z1,22) Z AnmZ1 23
n+m=0

with the domain of convergence T = {z € C?: |z;| < 1,|z3| < 40} such that ag f(z1,22) # 0
in T and there exists rp = (r),79) € [0,1) x [0, +00) such that for all r € (r),1) x (r3, +00) we
have rlﬁlnfmf(r) +1Inry > 1, where Ms(r) = L5, _olawm|riry. Let K(f,0) = {f(zt) =

Yo 2™ O H0n) . ¢ ¢ R} be class of analytic functions, where (6,,,;) is a sequence of pos-
itive integer such that its arrangement (6} ) by increasing satisfies the condition

0;.,1/6; >q>1,k>0.

For analytic functions from the class KC(f, 6) Wiman's inequality is improved.
Key words and phrases: Wiman's type inequality, analytic functions of several variables.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: andriykuryliak@gmail.com (Kuryliak A.O.), 121van.n@ukr.net (Tsvigun V.L.)

1 INTRODUCTION

In this paper we consider some analog of the classical inequality of A.Wiman (in this re-
gard, see [1-7]) for the class .A3 of analytic functions f represented by power series of the form

f(z) = f(z1,22) Z amzizy, z=(z21,22) € C2, (1)
n+m=0

with the domain of convergence T = ID x C = {z € C?: |z1]| < 1, |z5] < +oo}. Let .A? be the
class of functions f € A3 such that

aizzf(zl,Zz) Z0 2)

in T, A3 be the class of functions f € A3 there exists rp = (+{,79) € T:=[0,1) x [0, +-00) such
that forall 7 € (r{,1) x (9, +00) we have

) i
Mgy MM(r) +Inry > 1, My (r) o= Y. laum|riry )
n+m=0

and A2 = A% N A%.
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Proposition1. 1.If f € A%\ A3 then for every § > 0 there exists aset E = Ef(5) := Eqy x [1,13],
/ o) dInry < +oco, such that for allv € T \ E the inequlity
Elﬂ 7‘1

pr(r) 1 l/2+ ps(r)

< SN
mtf(r) — (1 _r)lJrzS 1 —1’,

pr(r) == max{|anm|riry : n,m > 0}, 4)

holds.
2. 1ff € AZ\ (A3 U AZ) then forallr € T, My (r) < C < +oo.

Proof. 1. Remark that every function f € A3\ A2 is the function of the form f(z) = f1(z1) for
all z; € C, i.e. is identical function of z; and analytic function of z; € ID. Therefore the result
of T.K6vari (see [8,9]) implies that inequality (4) holds forallr € T \ E.

2. Further, 7’13% In9M(r) = rld% In9My, (1), where My, (r1) = L% |ano|ry. Well known
that the function rld% In9My, (r1) is nondecreasing on (0,1). Therefore, with the denial of in-
equality (3) we obtain that the inequality rld% In9Mg (r1) +1Inry < 1forall r; € (0,1) holds.
Hence, My, (r1) = O(1) (r; — 1-0). O

Remark 1. For the function f € A3\ A similarly as in proof of 2) we obtain

1 r
In9M¢(ry,12) — 1nsz(r(1), rp) < 5(2 —Inrr?) 1né <(1-InM)In E’

forall (r1,72) € (r?,1) x (0, +o0).
For r = (r1,72) € T and a function f € A% we denote

N, = {(tl,tz) eT:ty >r, th > 1’2},
M¢(r) = max{|f(z)|: |z1] < r1,|z2| < 12},
ps(r) = max{|aym|riry': (n,m) € Zi}

We call E C T a set of asymptotically finite logarithmic measure on T (E € Y) if there exists

R € T such that g
1 7’2
(EN AR)
Vln n R / / 1-— 1’1 1’2 OO,

EHAR

i.e. the set EN Ay is a set of finite logarithmic measure on T.
We note that for a function f € A? of the form f(z) = fi(z1) - f2(z2), where fj is analytical
in ID and f; is entire function of one variable, the inequality

Mg(r) < 9Mg(r) < a ffr(l))lwl 1o ff_(r)ll 12404, (5)

foreveryr e Aw\E,E=E1 xE; CT,

d?’l d?’_’)_
/ < +00, / — < Ho0,
Ein(01) 1 =1 EoN(1,400) T2

follows from classical Wiman'’s inequality [6]

Inr)'/2d
M, (r2) < sz(rz)(lnﬂfz(rz))l/z1111/2 2 (rz € (13, +°°)\E2,/E L+ )%rr < +00>
2 , T 00
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for entire function f, and Kévari inequality [8]

Hr (1) 1/2+6 HA (1) 0 / dr
m < v/ LrinSEts
aln) =< (1—rp)t+e " 1-r \! €L DAE, EnO1) 1 =7 =

[ee]

for analytic in D function f;, where Mg (t) = Y% |gu|t", pg(t) = max{|g,[t": n > 0} and
function g(7) = Y% ¢, 7" and t > 0. Moreover, v, (E N Ag) < +oo for every R = (R, Rp) €
T,R1 >0,R, > 0.

Inequality (5) for the class .A? is proved in [10].

Theorem 1 ( [10]). Let f € A%. Forevery 6 > 0 there exists a set E = E(6, f) € Y such that for
r € T\ E inequality (5) holds.

None of the exponents 1 + ¢ of (5) can not be replaced by a number less than 1 (see [10]).

Remark 2. Remark, that inequality (5) follows from Proposition 1 also in the cases f € A% \
<A% U Az) ,f € A% \ A? e, analog of Wiman'’s inequality is not considered only in the case
fe AT\ AL

Let Q) = [0,1] and P be the Lebesgue measure on IR. We consider the Steinhaus probability
space (2, A, P), where A is the c-algebra of Lebesgue measurable subsets of ().

Let Z = (Zum(t)) be some sequence of complex valued random variables defined in this
space. For f € A? by K(f,Z) we denote the class of random analytic functions of the form

flzt) = Y umZum(t)2]25'. (6)

In the sequel, the notion “almost surely” will be used in the sense that the corresponding
property holds almost everywhere with respect to Lebesgue measure P on (). We say that some
relation holds almost surely in the class IC(f, Z) if it holds for each analytic function f(z, t) of the
form (6) almost surely in t.

Let Z = (Zum(t)) be some sequence of random variables defined in this space. Z,(t) =
Xum (t) + iYum(t) such that both X = X, () and Y = Yy (t) are real multiplicative system
(MS). For f € A% by K(f,Z) we denote the class of random analytic functions of the form

+o00
f(z,t) = Z Apm Znm ()21 25" (7)
n+m=0

For such functions in [11] it is proved following statement (Levy’s phenomenon).

Theorem ([11]). If f € A%, and Z = (Zum(t)), Zum(t) = Xum(t) + iYyum(t) such that X =
(Xnm(t)) and Y = (Yum(t)) are real multiplicative systems uniformly bounded by the number
1, then for every 6 > 0 almost surely in KC(f,Z) there exists a set E = E(f,t,0),E € Y, such
that forallr € T\ E

ps(r) 1nl/2+0 pr(r) /4, (8)

Mf(?’, t) = max{\f(z,t)] . ’21‘ S r, ’Zz‘ S 1’2} S m 1 —
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In the case when R = (R,(t)) is the Rademacher sequence, i.e. (R,(t)) is a sequence of
independent uniformly distributed random variables on [0, 1] such that P{t: R,(t) = £1} =
1/2, P. Levy [12] proved that for any entire function f of one complex variable we can re-
place the exponent 1/2 by 1/4 in the classical Wiman's inequality almost surely in the class
K(f,R) (Levy’s fenomenon). Later P. Erd6s and A. Rényi [13] proved the same result for the
class K(f, H), where H = (e2™@n(t)) is the Steinhaus sequence, i.e. (wy(t)) is a sequence of
independent uniformly distributed random variables on [0, 1]. This statement is true also for
any class IC(f, X), where X = (X, (t)) is multiplicative system (MS) uniformly bounded by the
number 1. Thatis forall n € N and € [0, 1] we have |X,(t)| < 1and

forall1 <ij <ip < --- < ij: M(XilXiz---Xik) =0,

where M(¢ is the expectation of a random variable ¢ ( [14, 15]). The same holds for Z = (Z,),
Zy =Xy +1iYy,and X = (X,),Y = (Y,,) are both MS.

In the spring of 1996 during the report of P. V. Filevych at the Lviv seminar of the theory
of analytic functions professors A. A. Goldberg and M. M. Sheremeta posed the following
question (see [16]). Does Levy’s fenomenon take place for analogues of Wiman’s inequality for
entire functions of several complex variables?

In the papers [16,17] we have found an affirmative answer to this question about Fenton’s
inequality [18] for random entire functions of two complex variables, in [19] about a inequality
from [21] for random entire functions of several complex variables, in [27] in the case of analytic
functions in the polydisc.

In this paper we consider the class KC(f, 6) of analytic functions

f(z,t) = f(z1,22,1) Z Qe OnmtZ 1, 9)

n+m=0

Here (6,) is a sequence of positive integer such that its arrangement (6} ) by increasing {6, :
(n,m) e Z%} = {6} : k€ Z.},0; 41 > 0f, satisfies the condition (0 is Hadamard sequence)

0 1/0f >g9>1,k>0. (10)

Remark, that in the case 4 > 2 analytic functions of the form (9) satisfy the assumptions of
previous theorem from [11], because (cos6yt), (sinf,t) are MS. But in the case g > 1 the
sequence of random variables (cos 19,715)%2+ need not be a MS (see [16]). So the following
question arrives naturally: does Levy’s phenomenon hold for the class K(f,0) with f € A% and a
Hadamard sequence 67

2 MAIN RESULT

Theorem 2. Letd > 0, f € K(f,0) be an analytic function of the from (9) and a sequence of a
positive integer (0 ) (nm)eZ2 satisfies condition (10). Then almost surely fort € R there exists
E(0,t) € Y such that for allr € T \ E we have
pr(r) 1215 P 1ats
Mg (r, t t 1 —1 . 11
flrt) = max f(=, )] € LSt ()
Similar inequalities for entire functions of one complex variable one can find in [13, 26], for

analytic functions in the unit disc in [9], for entire functions of two variables [11,17,19, 20,22,
23,27], for analytic functions without exceptional sets [15,24].
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3 AUXILIARY LEMMAS

Lemma 1 ([25]). Let 6 = (6.m) be a sequence of integers which satisfies (10). Then for any
B>0,1€N,I>2and {cyn: (nm) € Z2} C C there exits A > 0, B > 0 such that

o

where 52 Z +m=0 |Cnm|

Z Cn znzpleimlpze.’)_nié‘nmt
n+m=0

€ [o,zn]2}> AgS 1n1/21}_ ﬁ,, (12)

Lemma 2 ([10]). Leté > 0 and h: IR%|r — R4 be an increasing function on each variable such

that
~+00 400

/ / dulduz
—+o00.
h(uy, up)
Then there exists a set E C T of asymptotically finite logarithmic measure such that for all

r € T\E we have

0
81’1

0 1+
In M (r) < h(ln?mf(r),lnr2>,a—rzln?mf(r)g (msmf(r)) . (13)

-
-1 ra(1—r1)°

Lemma 3. There exits set E € Y such that forallr € T \ E we have

+00
pr(r) avas HF(r) o 50035
n+m)|ag, | < ——-_In In r
n+;:0( )’ nm‘ 172 (1 1)_’)_+o (1 —7’1) 2

Proof. Let h(r) = (r1r2)' ™. Then by Lemma 2, there exist set E € Y such that forall 7 € T\ E;
we have

d 1 1

InOn 1| A [ = n|apm | riry
o ) = Gy el = ey i

+oo 5

< EEESIEY Ms(NInry ™ Y nlawm|riry < n M (r) In' T M s (r) Inry o

I—n n+m=0 I—n

1 5 = r 5
< M (r) IO Mf(r) Inry ™0 1| By [P0 < —— 2 N (r) N ML (r
—1-n f() f() nJer::O |nm|12 _1’2(1—1’1)5 f() f()
1 s g 29 ;

< My (7) In'+? Me(r) Y. (n+m)|ag|riry < f( ) Int*? Me(r ) Int T py,

(1 — 7’1) n+m=0 1-— 141

By Theorem 1 we obtain forall ¥ € T\ E;

+00
pr(r) 146 P‘f( ). 1246 1426 P‘f( r) . 1426
n+;:0(n )i < (1 —rp)2te In 1—r In 2ln 1—n Iz

pr(r) 2435 HF(T) - 3/0135
< ——" 1 <]
- (1 — 1’1)2+‘S n 1—r n "2
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Proof of Theorem 2. Fork,m € Z and | € Z such that k > —I we denote

G ={r=(nm) €T k<In L<ktl <) <i+1),

“+00 +00
Giim = {r = (r1,72) € G:m <Inrpy < M+1}, Gi=U UGi
i=k j=I

Remark that the set

_1r1 +1Inpg(r) < 1}: {r eT: Hf—(r) < e}e Y,

Eoz{rET:ln1 T

because there exists rg such that Eg N A;, = @. By Lemma 3 for all r € T\ E; we have

n+m 1 =
Z |anm|riry < Z TWW%V?”Z _E Z (n +m)|anm|riry
+m=0

n+m>d n+m>d (14)
1 ]/lf(r) 2436 ]/lf( ) 3/2435
<o ot <
—d(1—r)2 n 1-n n r2 < pg(r),
whered = d(r) = (1fi1+)(52+5 In2+39 Pl‘f(rl) In3/2+30 1,

Let G;(kl = Gy \ Ey, I = {(l,]) G:} # @}, Er) =EgUE U <U(i,j)¢l G1]> . Then #I = +o0. For

(k,1) € I we choose a sequence ') € G}, such that Mf(r(k'l)) = rngég Mg(r). So, for all ¥ € G
we get

1w e 101 1 1
gﬂf(f( 1) < uplr) <eps(r®D), e T D ST, S DK
— 1—

AN
N

(k1) 2 (k) (15)
1) e (r™)

e? 1— rgkrl) —1—r — 1— r%k’l)

and also U 1)e1 Gy = Ukyer Gu \Ey = Ulifil Gy \ E2 = T\ E;. Denote Ny; = [2d; (r(k'l))],

where

246 2
d(r) = —° 2t ps(r) 3/2+3% (er,)

N (1 — 1’1)2+5 1-— 1

Forr € G;; we put

Wi, (r, t) = maX{ Y aprirfemyrtingat2mibmt |y [0,27'(]2} .
n+m§Nk,
For a Lebesgue measurable set G C G, and for (k,I) € I we denote vy(G) = meas(G) \vhere

meas(G;)’
meas denotes the Lebesgue measure on IR?.

Remark that vy is a probability measure defined on the family of Lebesgue measurable
subsets of G ([19]). Let Q = U )er Gy and foralli,j € Z ki, i (ki lij) € 1, ki < kiya,
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lij <lijy1. For Lebesgue measurable subsets G of () we denote

too /19 1\ ki+1—ki
=0
Loiia—1.
1 i,j+174,f
Ni 211/0 (1 o <§> )

*
" j=0 2lij 1 <1)li,N1+1+li,o Viipalisa,joa (G0 ka+lli+1,j+1)
- —\2

7

where N; = max{j: (k;, l;j) € I}. Remark that vk].Hl].H(G;(‘jHle) =v(Q) =1.

Thus v is a probability measure, which is defined on measurable subsets of Q2. On [0, 1] x Q)
we define the probability measure Py = P ® v, which is a direct product of the probability
measures P and v. Now for (k;1) € I we define

Fag = {(t,r) € [0,1] x Q: Wy, (r,t) > ASn,, () In'/2 Ny, },
Fu(r) = {t € [0,1]: Wy, (r,t) > ASn,, (r) In'/? Ny},

where S%\sz (r) = ZnNﬂm:o |y [*r2"13™ and A is the constant from Lemma 1 with = 1. Using
Fubini’s theorem and Lemma 1 w1th Cnm = Anm?y7y and B =1, we get for (k1) € I

Po(F]d) :/< / dP)dV:(ZP(Fkl(T))dV < NLHV(Q) I\:[lkl.

Q “Fy(r)

(rh)

Note that Ny; > ﬁ In?+3% 7 In 3/2+35 rgk,l) > ¢?*(1 + k)3. Therefore

—r{Dy2+s 1— V§
400 +o0
Z Po(Fia) <Z Z eZkl—i—k < Foo.
(kel —k+1

By Borel-Cantelli’s lemma the infinite quantity of the events {Fy: (k,I) € I} may occur
with probability zero. So,

—+00 400

Ph(F)=1, F=U U () Eclol]xq.

s=1m=1k>s, I>m
(kl)el

Then for any point (¢,7) € F there exist kg = ko(t,7) and Iy = Iy(¢,7) such that for all k > ko,
I > 1y, (k1) € I wehave Wy, (r,t) < ASn,, () In'/2 Nj.

So, v(F/\(t)) = 1 (see [19]).

For any t € F;([19]) and (k,I) € I we choose a point rék’l)(t) € Gj; such that

3 *
Wi, (5 (1), £) > 2 Mu(t), Mu(t) L sup{Wyy, (r,t): r € G} }.

Then from vy (F(t) N G};) = 1forall (k,1) € I it follows that there exists a point rkD () e
G}, N F\(t) such that [Wy,, (r{" (£), £) — W, (P®D (#), £)| < LMy (t) or

3 1
TMia () < Wi (6™ (1), ) < Wi, (P10 (1), 1) 4+ Mg (1),
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Since (t,r®)(t)) € F, from inequality (3) we obtain

1
iMkl(t) < Wiy, (r*D (1), 1) < AS, (D () In'/2 N

Now for rf) = ¢k () we get

2 k1
iz (rEh) s B s
= &D) 2

(1-r )1+o 1-— rikl)

So, fort € Fy and all k > ko(t), 1 > Ip(t), we obtain

1 P‘f(r(k’l)) Kl Vs
Sn(rkhy < yf(r(k'l)) < @ In D lnré ' )> : (16)
1—r 1—r"

It follows from (15) that d; (r*!)) > d(r) for r € G}, Then for t € F, r € F\(t) NG},
(k1) € I, k > ko(t),1 > Io(t) we get

Mg(r,t) < Yo o lamlr S +Wh, (nt) <Y a4 Mig(t).
n+m>2dy (kD) n+m>2d(r)

Finally for t € Fi, r € F(t) NGy, 1 > Ip(t) and k > ko(t) we obtain

Mf(?’(k’l), t) < }lf(?’(k’l)) + ZASNH (T(k’l)> 11’11/2 Nkl

(k1) (k1) 1 up(rh) vaer 1/4+6 (k1)
) , +o (K,
< pp(r) +2Aup (rY) (1_r(k,l) In 1—r(k’l)> In ry

1

17
) 2e2+0 BEVEEY ezﬂf(r(k’l))l 3/2438 ¢ ,..(kl) (17
x In R n e wy (ery ) )
—r —-n
pr(r) /2 B (r) Inl/4+0 1)

My (r,t) < (1—rq)1/240 1-n

Therefore inequality (17) holds almost surely (t € F;, P(F;) = 1) for all

re ( U (c,jlmFA(t))mc,g)\E* —(TNGH)\ (E*UG*UE;) = T\ B,
(k1)el

where Glji = U le, E;, =EiUG'UE*, G* = U(k,l)eI(G]fl \ F/\(t)).
It remains to remark that v(G*) satisfies v(G*) = ¥ 1yer(vi (Gyy) — v (F/(t))) = 0. Then
for all (k,1) € I we obtain

A meas(Gj; \ F/\(t)) A // drldrp_ B
v (G \ F (1)) = meas(GF,) =0, meas(Gy; \ F"( 1 A-r)n =0.
G \F
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Hexat A? kAac aHaAiTHuHMX PYHKLIT f BUTASIAY

+o0
f(Z) = f(zl/ZZ) = Z anmzilzg_n

n+m=0

3 obaactio 36ixnocti T = {z € C2: |z1] < 1,|z2] < 400} Takux, mo aisz(zl,zz) # 08 Tiicaye

ro = (r9,79) € [0,1) x [0, +00) Taxe, wo arst Beix ¥ € (r),1) x (19, +00) Maemo rla%lnimf(r) -
Inry > 1, ae Mp(r) = L0, o lawm|riry. Hexait K(f,0) = {f(z,t) = Ti5%,_o anme? ™ Ot0n) + ¢ €
R} — xaac aHariTHuEMX PYHKILN, Ae (O ) — MOCAIAOBHICTD AOAATHMX IIAMX UMCEA TaKa, IO 1i

BIOPSIAKYBaHHS (6} ) 3a 3pOCTaHHSIM 3aAOBOABHSIE YMOBY
0ci1/0F >q>1,k>0.

Anst aHaniTHUHEYIX pyHKiA 3 Kaacy K(f, 0) yrodreHo HepiBHicTS vy Bimama.

Kontouosi cnosa i ¢ppasu: HepisHicTh Tvmy BiMaHa, aHaAiTHUHI PyHKIIT Bia AeKIABKOX KOMIIAe-
KCHVX 3MiHHMX.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp
Carpathian Math. Publ. 2018, 10 (1), 143-164 KapmaTcbki MmaTem. my6a. 2018, T.10, Nel, C.143-164
doi:10.15330/cmp.10.1.143-164

(L)

LEVENT H., YILMAZ Y.

TRANSLATION, MODULATION AND DILATION SYSTEMS IN SET-VALUED
SIGNAL PROCESSING

In this paper, we investigate a very important function space consists of set-valued functions
defined on the set of real numbers with values on the space of all compact-convex subsets of complex
numbers for which the pth power of their norm is integrable. In general, this space is denoted by
LP(R,Q(C)) for 1 < p < oo and it has an algebraic structure named as a quasilinear space which
is a generalization of a classical linear space. Further, we introduce an inner-product (set-valued
inner product) on L2(IR, (C)) and we think it is especially important to manage interval-valued
data and interval-based signal processing. This also can be used in imprecise expectations. The
definition of inner-product on L?(R, Q)(C)) is based on Aumann integral which is ready for use
integration of set-valued functions and we show that the space L?(RR, (C)) is a Hilbert quasilinear
space. Finally, we give translation, modulation and dilation operators which are three foundational
set-valued operators on Hilbert quasilinear space L?(R, Q)(C)).

Key words and phrases: Hilbert quasilinear space, set-valued function, Aumann integral, transla-
tion, modulation, dilation.

Department of Mathematics, Inonu University, 44280, Malatya, Turkey
E-mail: halisebanazili44@gmail.com(LeventH.), yyilmaz44@gmail.com(Yilmaz Y.)

INTRODUCTION

The translation, modulation and dilation operators play an important role in signal pro-
cessing. These operators are usually applied to electromagnetic signals such as radio, lasers,
optics and computer networks. For example, the translation operator provides parallel dis-
placement for a discret-time signal. The modulation operator changes the wealths of a sound
wave. As it is well known, converting an analog signal to a digital signal leads to ambiguous
computation errors. In such circumstances to perform signal processing we need the area of
interval-valued signal processing, more generally set-valued signal processing (see [1-3]). In
this work, we introduce translation, modulation and dilation operators on L?(IR, Q(C)) which
is a special space of set-valued functions.

Unfortunately, the space L?(IR,)(C)) have an algebraic structure which is not a linear
space. This structure is called as a “quasilinear space” by Aseev in 1986 [5]. Therefore, he
present an approach for the function spaces of set-valued mappings. Let us give the definition
of a quasilinear space which is presented by Aseev [5].

A set X is called a quasilinear space if a partial order relation ”<", an algebraic sum oper-
ation, and an operation of multiplication by real numbers are defined in it in such a way that

YAK 517.9
2010 Mathematics Subject Classification: 06B99, 28B20, 32A70, 46C05, 47H04, 54C60.

@ Levent H., Yilmaz Y., 2018



144 LEVENT H., YILMAZ Y.
the following conditions hold for all elements x,y,z,v € X and all &, B € R:

x =x,

x Xzifx Jyandy <z,
x=yifx 2yandy < x,
X+y=y+x
x+(y+z)=(x+y) +z

there exists an element (zero) 6 € X such that x + 6 = x,
a(Bx) = (a)x,

a(x +vy) =ax+ay,

1x = x,

Ox =296,

(. + B)x < ax + Bx,
x+zy+vifx Jyandz <7,
ax X ayifx < y.

Note that the concept of quasilinear space has been only introduced over the field R. As
distinct from Aseev’s definition, in next section we will introduce the quasilinear spaces over
general field K which consists of real or complex numbers.

Any linear space is a quasilinear space with the partial order relation "x <y <= x = y”.

Perhaps the most popular example of a nonlinear quasilinear space is the set of all non-
empty closed intervals of real numbers sembolized by Q¢(RR), and it is a quasilinear space
with the inclusion relation “C”, the algebraic sum operation

A+B={a+b:ac A beB}

and the real-scalar multiplication A\A = {Aa:a € A}.

In fact Q¢(R) is the set of all nonempty compact convex subsets of real numbers and it
is a subset of (R), the set of all nonempty compact subsets of real numbers which is an
another important example of a nonlinear quasilinear space. In general, QQ(E) and Q¢(E) are
the sets of all nonempty closed bounded and nonempty convex closed bounded subsets of any
normed linear space E, respectively. Both are a quasilinear space with the inclusion relation,
the real-scalar multiplication and with a slight modification of addition as follows:

A+B={a+b:ac A beB}

where the closure is taken on the norm topology of E.

The investigation of Q¢ (IR) or more general (3(C) contributes interval and convex analysis
and they are excellent tools for mathematical formulation of many real-life situations, for ex-
ample signal processing. Therefore we are interested in the space of ((C)-valued functions in
this article.

We know the Banach space LP(R) for 1 < p < oo the space of all functions f for which
|f|? is integrable, is one of the fundamental vector spaces in functional analysis. In this pa-
per we will try to investigate the space L7 (IR, 3(C)) of all functions F : R — Q(C) such that
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[ |F(x)||ydx do exist (1 < p < o). We can see that the set LP(R, 2(C)) is a normed quasi-
R

linear space and the special case L?(R,Q(C)) is a Hilbert quasilinear space. We use a new
kind inner-product for set-valued functions to construct a norm structure of L?(R, Q(C)). The
inner-product will be introduced by an integral in the sense of Aumann [8].

1 PRELIMINARIES

We will start by giving the definition of quasilinear space which is different from Aseev’s
definition. In this definition we will consider the quasilinear spaces over a general field K. The
elements of K are real or complex numbers. We think that this approach is suitable mathe-
matical background of some applications, e.g., interval analysis and signal processing.

A set X is called a quasilinear space over field K if a partial order relation “=<", an algebraic
sum operation, and an operation of multiplication by real or complex numbers are defined in
it in such a way that the following conditions hold for any elements x,y,z,v € X and any
a, B eK:

x < x,

x Xzifx <yandy <z,

x=yifx <yandy < x,

xX+y=y+x

x4 (y+2) = (x+y) +2

there exists an element 6 € X such that x + 6 = x,

x(Bx) = (af)x, M
a(x +y) =ax+ay,

1x = x,

Ox =0,

(@ + B)x < ax + Bx,
x+z<y+vifx <yandz <v,
ax 2 ayifx < y.

K is called the scalar field of the quasilinear space X, and X is called a real quasilinear
space if K = R and is called a complex quasilinear space if K = C. Mostly K will be C in this
work.

Any real linear space is a quasilinear space with the partial order relation defined by “x <y
if and only if x = y”. In this case, quasilinear space axioms is the linear space axioms.

Lemma 1 ([5]). Suppose that each element x in quasilinear space X has an inverse element
x" € X. Then the partial order in X is determined by equality, the distributivity conditions
hold, and consequently X is a linear space.

Hence in a real linear space, the equality is the only way to define a partial order such that
conditions (1) hold.

It will be assumed in what follows that —x = (—1) - x. Also, note that —x may not be x’.
Any element x in a quasilinear space is regular if and only if x — x = 6, that is, if and only if

x' = —x.
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Now, let us record some basic necessary results from [5]. In a quasilinear space X, the
element 0 is minimal, i.e., x = 0 if x < 0. An element x’ is called inverse of x € X if x + x’ = 6.
The inverse is unique whenever it exists. An element x possessing inverse is called regular,
otherwise is called singular.

Definition 1 ([6]). Suppose that X is a quasilinear space and Y C X. Then Y is called a sub-
space of X whenever Y is a quasilinear space with the same partial order on X.

Theorem 1 ([6]). Y is subspace of quasilinear space X if and only if for every x,y € Y and
,peK a-x+p-yey.

Proof of this theorem is quite similar to its classical linear algebraic analogue.

Let X be a quasilinear space and Y be a subspace of X. Suppose that each element x in
Y has inverse element ¥’ € Y then by Lemma 1 the partial order on Y is determined by the
equality. In this case Y is a linear subspace of X. An element x in quasilinear space X is said
to be symmetric if —x = x and Xy, denotes the set of all symmetric elements. Also, X, stands
for the set of all regular elements of X while X stands for the sets of all singular elements and
zero in X. Further, it can be easily shown that X;, Xs,» and X are subspaces of X. They are
called regular, symmetric and singular subspaces of X, respectively. Furthermore, it isn’t hard to
prove that summation of a regular element with a singular element is a singular element and
the regular subspace of X is a linear space while the singular one is nonlinear at all.

Example 1. In Q¢(R),
{{0}} U{][a,b] :a,b € Randa < b}

is the singular subspace of Q¢ (R). Further {{a} : a € R} is the set of all degenerate intervals
or the set of all singletons of R constitutes the regular subspace X,. It is a linear subspace of
Qc(R) and (Qc(R)), is the copy of R in Q¢ (R). In fact, for any normed linear space E, each
singleton {a}, a € E, can be identified with the element a and hence E can be considered as
the (regular) subspace of both Q¢ (E) and Q)(E). Further, the regular subspace of both Q¢ (E)
and Q)(E) is isometrically isomorphic to E, namely, (QOc(E)), = E and (QQ(E)), = E.

Let X be a real or complex quasilinear space. The real-valued function on X is called a norm
if the following conditions hold:

||x]| > 0if x #0,
[yl < ]l +lyll,
[lox]l = fal f[x]l,

if x <y, then |[x| < |y,
if for any & > 0 there exists an element x; € X such that

x < y+x.and [|xe] <ethenx <y,

here x, y, x; are arbitrary element in X and « is any scalar.

A quasilinear space X with a norm defined on it, is called normed quasilinear space. It follows
from Lemma 1 that if any x € X has inverse element x’ € X, then the concept of normed
quasilinear space coincides with the concept of real normed linear space. Notice again that x’
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may not be exist but if x exists then x’ = —x. Hausdorff metric or norm metric on X is defined
by the equality

h(x,y) = inf{r >0:x =< y+a§r),y =< x—i—agr) and Hafr)H <vri= 1,2}.

Since x < y+ (x —y) and y < x+ (y — x), the quantity h(x,y) is well-defined for any
elements x,y € X, and it is not hard to see that the function / satisfies all the metric axioms.
Also we should note that i(x, y) may not equal to ||x — y|| if X is not a linear space; however
h(x,y) < ||x —y| forevery x,y € X.

Lemma 2 ([5]). The operations of algebraic sum and multiplication by real or complex numbers
are continuous with respect to the Hausdorff metric. The norm is continuous with respect to
the Hausdorff metric.

Example 2 ([5]). For a normed linear space E, a norm on Q)(E) is defined by
[Allq = sup [la]|g -
acE

Hence Q¢(E) and Q(E) are normed quasilinear spaces. In this case the Hausdorff (norm)
metric is detined as usual:

hix,y) =inf{r >0:x Cy+5,(0),y Cx+S5,(0)},

where S,(0) is a closed ball of E and x,y are elements of Q¢(E) or Q(E). Further, Qc(E) is a
closed subspace of Q(E).

Definition 2 ([5]). A normed quasilinear space X is called an ()-space if there exists an element
Bx # 0 such that

If X is a real normed linear space, then Q)(X) is an Q)-space.

Now, let us give a useful type of quasilinear spaces called consolidate quasilinear space.
Definition 3 ([6]). Let X be a quasilinear space, M C X and x € M. The set
FM={ze M,:z<x}

is called floor in M of x. In the case of M = X it is called only floor of x and written briefly Fy
instead of FX.

Floor of an element x in linear spaces is the singleton {x}. Therefore, it is nothing to discuss
the notion of floor of an element in a linear space.

Definition 4 ([6]). A quasilinear space X is called consolidate quasilinear space whenever
sup F, do exists for every y € X and

y=supF, =sup{z€ X,:z=y}.

Otherwise, X is called non-consolidate quasilinear space.
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Especially, we should note that the supremum in this definition is defined according to the

partial order relation “<” on X. Hence, we will use the notion of “sup” in place of general
i

notation “sup” to emphasize this case.

Example 3 ([6]). For any normed linear space E, Q) (E) and Q¢ (E) are consolidate normed
quasilinear space.

Aseev launched a theory in [5] that we see it as the beginning of quasilinear functional
analysis. However, there was a lot of deficiencies in the theory. One of them is the definition of
inner-product. Now we will give the definition of inner-product in a quasilinear space which
coinsides with its linear analogue [6,7]. Later we will present some fundamental properties of
inner-product and Hilbert quasilinear spaces. Firstly, let us introduce a definition.

Definition 5. For two quasilinear spaces (X, <) and (Y, %), Y is called compatible contains X
whenever X C Y and the partial order relation < on X is the restriction of the partial order
relation < on Y. We briefly use the symbol XCY in this case. We write X <Y whenever XCY
and YCX.

Remark 1. X T Y means X and Y are the same sets with the same partial order relations
which make them quasilinear spaces. However, we may write X = Y for X Y whenever the
relations are clear from context.

Definition 6. Let X be a quasilinear space. Consolidation of X is the smallest consolidate
quasilinear space X which compatible contains X, that is, if there exists another consolidate
quasilinear space Y which compatible contains X then X C Y.

Clearly, X = X for some consolidate quasilinear space X. We do not know yet whether each
quasilinear space has a consolidation. This notion is unnecessary in consolidate quasilinear

spaces, hence it is redundant in linear spaces. Further, Q¢ (R"); = Q¢c(R").

For a quasilinear space X, the set FyX = {z € <X)r 1z X y} is the floor of y in X.

Now, let us give an extended definition of inner-product given in [7]. We can say that the
inner product in the following definition may be seen a set-valued inner product on quasilinear
spaces.

Definition 7. Let X be a quasilinear space having a consolidation X. A mapping (, ) : X x
X — Q(K) is called an inner-product on X if for any x,y,z € X and a« € K the following
conditions are satistied :

Ifx,y € X, then (x,y) € Qc(K), =K,

(x+y2) < (x2)+(y2),

{ax,y) = a(x,y) and (x,ay) =T (x,y),

(x,y) ={y,x),

(x,x) > 0forx € X, and (x,x) =0 x =0,

159l = sup { (@b}l : a € FX,b € FY},

ifx X< yandu < v then (x,u) C (y,v),

if for any € > 0 there exists an element x. € X such that
X 2y + xe and (xg, x;) C S (0) thenx = y.
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A quasilinear space with an inner product is called an inner product quasilinear space.

Remark 2. For some x € X;, (x,x) > 0 means (x, x) is non-negative, that is, the order ">" in
the definition is the usual order on Q¢ (K), = K. It should not be confused with the order "<"”
on X.

Example 4 ([6,7]). Let X be a linear Hilbert space. Then the space ()(X) is a Hilbert quasilinear
space by the inner product defined by

(A,B)y, = {{a,b)y 0 € ADbE B}

for A,B € Q)(X). Further, there is no need the closure for the definition of inner product on
Q(C), since {(a,b)c :a € A,b € B} is closed subset of C. Namely, the inner product on Q)(C)
is given by

(A,B)o ={(a,b)c:a€ Abec B}.

Every inner product quasilinear space X is a normed quasilinear space with the norm de-
fined by

[} = /1l (x %}l

for every x € X. This norm is called inner product norm. Further x, — x and v, — y in a inner
product quasilinear space then (x,, y,) — (x,y).

Lemma 3 ([6]). Let X be a inner product quasilinear space. Then

ey lla < lxllx llyllx

forx,y € X.

A inner product quasilinear space is called Hilbert quasilinear space if it is complete according
to the inner-product (norm) metric. For example, Q(C) is a Hilbert quasilinear space.

Definition 8 ([5]). Let X and Y be quasilinear spaces. A mapping T : X — Y is called a
quasilinear operator if it satisfies the following conditions:

T(x1 + x_’)_) = T(Xl) + T(XZ),
T(ax) = aT(x) foranya € R,
ifx1 < xp, then T(x1) < T(x2).

Definition 9. Let X and Y be quasilinear spaces. A mapping T : X — Y is called a linear
operator if it satisties the following conditions:

T(x1 + x_’)_) = T(Xl) + T(XZ),
T(ax) = aT(x) foranywa € R,
ifx1 < xp, then T(x1) < T(x2).

Hence linear operators can be obtained by adding an extra condition to the first condition
of quasilinear operators.
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Remark 3. We will see that quasilinear operators may not conserve quasilinear structure. Due
to this obstacle we introduce the linear operator notion acting on quasilinear spaces. Obvi-
ously, any linear operator between quasilinear spaces is a quasilinear operator, but not con-
versely. If X and Y are linear spaces then the definition of quasilinear operators coincides with
the usual definition of a linear operators.

Definition 10 ([5]). Let X and Y be a normed quasilinear spaces. A quasilinear operator T :
X — Y is said to be bounded if there exists a number k > 0 such that | Tx| < k||x|| for any
x e X.

2 AUMANN INTEGRAL

We will need the integral of set-valued functions when we deal with the space L7 (R, Q)(C)),
1 < p < oo. For this purpose we will introduce the integral of a set-valued function and give
some properties of this integral.

Integrals of set-valued functions are given by Robert J. Aumann in 1965. It is as follows [8]:

Let I be the unit interval [0, 1]. For any ¢ in I, let F(¢) be a nonempty subset of R”. Suppose
that £ be the set of all point-valued functions f from I to R" such that f is integrable over I
and f(t) € F(t) for all t in I. Define

/ F(f)dt = / F(tydt: fer
I I

i.e., the set of all integrals of members of L.

Throughout the section we will use the notations: The triple (T, A, u) is a complete o-finite
measure space, X is a complete separable metric space and F : I' ~ X represents a set-valued
function that assigns to each t € T a subset F(t) C X.

Let us give the main definitions and theorems with respect to the integral of a measurable
set-valued function.

Definition 11 ([9]). A set-valued function F : I' ~ X is called with closed, open or compact
valued if F(x) is a closed, open or compact set in X, for each x € T, respectively.

Definition 12 ([9]). A set-valued function F : I' ~~ X is called measurable if for any open subset
0 CcX,
FYO)={xcT:F(x)NO # @}

is element of A.

Measurability of set-valued functions is closely associated with the concept of measurabil-
ity of its selections.

Definition 13 ([9]). For a given set-valued functionF : I ~ X, a measurable functionf : I — X
satisfying
forallx €T, f(x) € F(x)

is called a measurable selection of F.
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Theorem 2 ([9]). Let F : T ~~ X be closed valued. Then there exists a measurable selection
of F.

We denote by LP(I', X, u), 1 < p < oo the Banach space of all measurable functions f :
I — X such that [ ||f||Pdy < co.If T = K, where K = R or K = C and y is the Lebesque

T
measure then we find LP(T, X, ) = LP(R). For 1 < p < oo, SP(F) is the set of all selections
f € LP(T, X, u) of a measurable set-valued function F : T ~~ X [10], i.e.,

SP(F)={f:T > X: / LF|IP du < o0, and f(x) € F(x) for x € T}.

Definition 14 ([4]). A set-valued function F : I' ~» X is called integrably bounded if there
exists a nonnegative function f € L(T', R, ) such that

F(x) C f(x)B almost everywhere inT,
where B is the unit ball of X.
Aumann gave the definition of an integral of a set-valued function in the following way:

Definition 15 ([4]). The integral of F on I is the set of integrals of integrable selections of F :

/de{/fdy:fesl(P)}.
r T

We will say that F is integrable set-valued function in the sense of Aumann if the set { [ fdu :
T
(4)
f € SY(F)} is not empty. Aumann integral of F will be shown as [ Fdy.
r

Proposition 1 ([9]). If G : T ~» X is Aumann integrable and G(x) C F(x) almost everywhere
onTI. Then the set-valued function F is also Aumann integrable and

(4) (4)
/G(x)dx C /F(x)dx
r r

Proposition 2 ([9]). IfF, F;, F, : I ~ X are Aumann integrable then F; + F; and AF are Aumann

integrable and
(4)

(4) (4)
/(a 4 B)(x)dx = /Fl(x)dx + /Fz(x)dx
T T

T

and
(A)

/AF dx—A/F

Proposition 3 ([9]). If F : R —Q(X) is Aumann integrable and the integral of F is compact

then
(A) (A)
[F@ax| < [IF@)qdx.
T 0O T

—
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Theorem 3 ([4]). Let F : I ~» R" be a measurable and closed-valued function. If y is nonatomic
and F is integrably bounded, then the Aumann integral of F is compact.

Now let us present the Dominated Convergence Theorem for the Aumann integrals.

Theorem 4 ([11]). If F, : T — Q(C) n = 1,2,... are measurable closed valued functions,
{IIFa ()| }52-; is uniformly integrable and F,(x) — F(x) with respect to the Hausdorff met-
ric then

(4) (4)
/Fn(x)dx — /F(x)dx.
r r

3 THE HILBERT QUASILINEAR SPACE L%(RR, Q(C))

In this chapter we will concentrate on the quasilinear structure of the LF(R, (3(C)) space,
1 < p < co. We will show that L (IR, (}(C)) spaces are normed quasilinear space over the
field C and later we construct a set-valued inner-product on L?(RR, Q(C)) by way of Aumann
integral.

For 1 < p < oo, the space LP(R,Q}(C)) consists of all set-valued measurable functions
F : R —Q(C) such that the Lebesque integral

JIFGI;dx
R

is well defined, where the notion of measurability of F is the measurability in Definition 12.
Note that this integral is a classical Lebesque integral.

Among the L7 (R, Q}(C)) spaces, the case p = 2 has a special importance: We will say that
L%(R,Q(C)) is an inner-product quasilinear space with respect to the inner-product which is
defined via Aumann integral

(4)
(F,G) = [ (F(x),G(x)qdx. @
R

Firstly, let us indicate L?(IR, Q(C)) is a consolidate quasilinear space and so it has a consoli-
dation. Therefore, we can define a set-valued inner-product function on this space. After the
definition of inner-product on L?(R, Q(C)) we will denote the norm on L?(RR, Q(C)) with

1/2

IFIl={ [ 1f)Pdx : f € S2(F)}
R

Q

and we will show that this norm comes from the inner-product given by the equality (2). There-
after, we will show that the inner-product norm on L?(IR, Q(C)) coincides with the expression

1/2
( / P<x>|édx> ,
R
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1/2
IFl = ( / F(x)édx)
R

is also a norm on L?(R, Q(C)). Further, we will prove that L?(IR, )(C)) is a Banach quasilinear
space with this norm. Thus, we will say that L?(IR, Q(C)) is a Hilbert quasilinear space.

The operations of algebraic sum, multiplication by a complex scalar and the partial order
relation are defined as follows:

(F+F)(x) = F(x) + B(x), (AF)(x) = AF(x)

namely, the equality

and
F;1 < B < F(x) C Fi(x) forany x € R.

By a similar way given in [5], it is easy to verify that LP (R, (}(C)) is a quasilinear space over
the field C by the above algebraic operations and the relation.
Now let us determine the regular elements of LP(R, ((C)), 1 < p < oo:

Fe (LP(R,Q(C))) < F-F=0< F(x) — F(x) = {0}, forall x € R
< F(x) €e Q(C), =C, forall x € R.

By )(C), = C we mean there exist an isometric isomorphism (equivalence) between these
normed linear spaces. Recall again that the regular subspace of a quasilinear space is just a
linear space. Hence we can give the following corollaries.

Corollary 1. (LP(R,Q)(C))), = LP(R,Q(C),) = LP(R,C) = LP(R) for1 < p < oo. Further, if
F € LP((R,Q(C))), then there exists only one selection of F and this selection is equal to itself.

Now we will prove that the L?(IR, Q(C)) space is a inner-product quasilinear space.

Theorem 5. The quasilinear space L?(R,Q(C)) is an inner-product quasilinear space with
respect to the inner-product

(4)

= [ (F(x),G(x)) v ®
R

for F,G € L*(R,Q)(C)) and using the Aumann integral gives the equality

(A)

/ o dx = {/ cdx:feSX(F),ge (G)} @
R
Proof. Previously, we shall verify that the equality (3) is well-defined, i.e., that the function

Urc: R =Q(C), Urc(x) = (F(x),G(x))q

is integrable according to Aumann and this integral belongs to ()(C) (see, Definition 7). If
we consider the Theorem 2 then we can say that Ur ¢ has a measurable selection, since UF ¢
is closed valued. Thus, this function is integrable according to Aumann. Now we will show
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that the Aumann integral of Uf ¢ is an element of ()(C): Firstly, let us show that U  is inte-
grably bounded, namely, there exists a nonnegative integrable function f : R — IR such that
Urg(x) € f(x)B for any x € R, where B = {a € C : |a| < 1}. By the definition of norm on
Q(C),

IUrc(x)llq = IKF(x), G(x))qll = sup{[{ax, bx)cl : ax € F(x),bx € G(x)}.

Since for each x € R, U g(x) is a compact set, there exists the elements a) € F(x) and b? €
G(x) which are dependent on x such that

lurc()llq = IF(x), Gl = |{ad, 88) |-

By reason of the fact that each of the elements x corresponds to the element a € F(x) and
b € G(x), we can define the function f : R — R such that

flx) = ’<a’0"b’0‘>c"

Further,

fdx

</!f rdx—/)a & \dx—/nupc Hndx—/n 0)alldx.

By Lemma 3 and Holder inequality we observe that

/n C)alldx < [(IFE)la 16 |o)dx < ( /HP )l ) ”2/HG )12,

R

The last inequality implies f is integrable since F, G € L?(R,Q(C)). Furthermore,

lurc()llo = [(#%,82) | = |(a%,82) | IBI = IIf(=)B].

Since ()(C) is an Q-space, we have that Ur g(x) € f(x)B for any x € R and so U is inte-
grably bounded. Consequently, by the Theorem 3 we say that the Aumann integral of Ur ¢

(A (4)
G) = / U (x)dx = / (F(x), G(x))q dx
R R

is a compact set. The next step is to verify the equality (4): If we apply the definition of Aumann
integral to the set-valued function Ur ¢ then we write

hS

(4) (4)

(F,G) = [ (F(x),G(x))qdx = /uF,G(x)dx - {/h(x)dx ‘he S(Urc))

B~

Now let us research the selections of Ur ;. By the definition of norm on ((C) we write

(F(x),G(x))q ={(z,w)c:z€ F(x),w € G(x)}.
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If we remember that i(x) € Upg(x) for every x € R then for the determined elements 2 €
F(x) and w9 € G(x) it is written that

hx) = (2,w)

where z0 and w? are depend on the element x. Let us describe the functions f : R — C and
¢ : R — C such that f(x) = z% and g(x) = w!. The functions f and g are well-defined due to
the fact that & is a function. It is obvious that f € S?(F) and ¢ € S*(G) and so f,¢ € L*(R).
Also we can see that

for any element x. The equality

[nyax| = < [ 1) g)e|dx = [ [f(x)g()]dx
R R R

and from the Cauchy-Shwarz inequality give

/‘f )| dx < ( /|f |dx1/2/|g )2 dx)/? < oo

andsoh € S(UF,G). Hence,
(4)

(F,G) = [ (F(x),G(x dxz{/ )cdx: f € SX(F),g € SHG)}:

R

[ (70, 8(x))e dx
R

Now we shall show that the expression (3) defines an inner product on L?(R, Q(C)) in the
meaning of the Definition 7.

1. If F,G € L*(R,Q(C)) then (F,G) € Q(C), = C.
If F,G € L*(R,Q(C)) then by the Corollary 1

(4)
(F,G) = / (F(x),G(x))de:/(F(x),G(x))Cdx:/F(x)G(x)dx
R R R

Also if we remember that the equality

(F,G) = [ F(x)G(x)dx
l

is complex-valued inner product on L?(IR) then we say that (F,G) € Q(C), = C.

By the second condition of inner product on ()(C) and the Proposition 1 we have that

(A) (A)
(F+G,H) = [ (F(x)+G(x), Hx))qdx € [ ({F(x), H(x)q + (G(x), H()q)dx
R R
and from the Proposition 2 we obtain that
(4)
<F+G,H>g/< (x),H dx—l—/ ) dx = (E, H) + (G, H).

R
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3. (AF,G) = A (F,G) and (F,AG) = A(F,G) :
By the third condition of inner product on Q(C) and the Proposition 2 we have that

(A) (A)
(AF,G) = [ ((AF)(x), Gx)qdx = [ A(F(x),G(x)qdx
R R

- A/ (F(x), G(x)) o dx = A (E, G).

It can be easily shown that (F,AG) = A (F,G).

4. (F,G) = (G,F):
By the fourth condition of inner product on Q(C),

(4) (4)
(F,G)= [ (F(),G(x)qdx= [ (G(x),F(x))qdx = (G, F).
R R

5. (F,F) > 0for F € (L>(R,Q(C))), and (F,F) = {0} & F =0 :
If F € (L?(R,Q(C))), then f € L?(R) by the Corollary (1) and so

(4)

<F,F>=/<<> dx—{/ ) dx}
_{/p Fx)dx} = {/\Fx]dx}.
R

Since the inner-product on L?(R) is non-negative we have that [ |F(x) >dx > 0 and so

R
(F,F) > 0.
Now let us assume that (F, F) = 0. Then
(4)
/<<> dx—{/ Jedx: f.g € S(F)} = {0},
R
This implies f f(x)f(x)dx = f |f(x)|*>dx = 0. Hence, by the Corollary (1) and the norm

on L2(R) we say that f = 0. Smce the any selection f of F is equal to 0, we say that F = 6.

6. [{F, G)llq = sup{ll{f,&)lla: f € Fr, g € Fc} :
Firstly, it is not hard to see that Fr C S?(F) for F € L*(R,Q}(C)). By this way we say that

sup{I[{f,8)lln : f € Frg € Fo} = sup{| [ (f(x),g(x))c x| : f € Fr,g € Fo)
R
= sup{| [ (f(x),8(0))c x| : f € S*(F), g € S(G)} = | {F, G) |-
R
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7. (F1,G1) C (F,Gp)if FF R Fand G; < Gy :

If i X F,and G; = Gy then Fi(x) C F(x) and Gy(x) C Gy(x) for a.e. x € R. By the
seventh condition of inner product on ()(C) we say that

(Fi(x),G1(x)) € (Ba(x), Ga(x)) -

Therefore, using the Proposition 1 implies the equality

(4) (4)
(F, Gy) = / (Fi(x),G1(x)) dx C / (F2(x), Ga(x)) dx = (F5, Ga) .
R R

8. We show that if for any ¢ > O there exists an element F, € L*(R,Q(C)) such that F < G + F;
and (Fg, Fe) C S¢(0) then F < G :

Suppose that for any & > 0 there exists an element F, € L?>(R, Q)(C)) such that F < G + F;
and (F, F¢) C S¢(6). Then

I(Fe )l < 15:0) 0 = & ©
Further,
(4)
I(FoFla = || [ (G, E@qdx| = [ (), ge()cdx: foge € SR}
R Q R Q
= sup{| [ (fi(x), o) x| : fe € S2(R)}

R
= sup{| [ 1f:(x)dx|: f; € S*(F)} = |EIP
R

Hence by the inequality (5) we say that ||Fe|[> < e The last condition of norm on
L*(R,Q(C)) indicates F < G.

O

For1 < p < oo, the expression
1/p

IF|l =

{[IfPdx: f e s(F))
R

Q
defines a norm on L? (IR, 3(C)) and so this space is a normed quasilinear space and this norm
is an inner-product norm obtained from the inner-product (3). Notably,

(4)
IFIP = 1B = | [ (B, Eqdx| = | [ (Fx)g(x)cdx: fig € SHP)
R R Q
= sup{| [ (f(x),g(x))cdx|: f,g € S(E)} = sup{| [ (f(x), f(x))ex|: f € SHE)}
R R

= sup{ [ |f(x)"dx: f € S*(F)}.

R
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Since for bounded subset A C C we have that sup |A| = sup |A| where |A| = {[a] : a € A}
then

IFI? = IEF) | = sup{ [ IF (o) dx: £ € S3(F)} = sup { [ If(x) dx : £ € S(E)}
R R

{[1f)Pax: £ € 52(F))
R

Q

and so
1/2

IE|l =

{[If)Pax: f e s2(F)}
R

Q

Lemma 4. For p = 2, the inner-product norm is equivalents to ( [ ||F(x)||g dx)V/? ie., if F €
R

L*(R,Q(C)) then

IF|l =

{/!f JPdx: f € S2(F

/ [FG) [y d)2 ©)

Proof. By the Proposition 3 and the norm of inner-product on Q(C), we write

(A)
IFIP = IF, ) / adx </n Qndx—/up b )
R

and

IE|* = I(E, B)|| = ®)

{[1f(x)Pds: f € s2(F))
R

0
Using the (7) and (8) we have the inequality

IEI> = IE B {/f X)fdx: f € S2F /HF )l ©

It is obvious that for any x € R, F(x) is a compact subset of C. Hence, there exists an element
t§ in F(x) such that

sup{Jt] : £ € F(x)} = |£3].
Let us define the function g : R — C with g(x) = #§. It is not hard to see that g is well-defined.
The function g is an element of S*(F) due to the fact that for x € R, g(x) = t3 € F(x) and

/HF e = [(sup{lf] :t € F(x de—/\tor dx—/\g . (10)

R

Since

[ lg)Pdx < sup{ [ |f(x)dx: f € S2(F))
R

R
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and
sup{ [ |f(x)dx: f € SH(E)} = sup { [ |£(x)"dx s f € S2(F))
R R
([ 1f)Pax: f € S2(F)}
R Q
This implies
[1g@Pdx <|[{ [ 1f0)P dx: f e $2(P) (1)
R R Q
By the (10) and (11) we say that
JIUEIGdx = || [ 1f0)P dx s £ € 2(F)} (12)
R R Q
Therefore, from the (9) and (12) we obtain that
1/2
IFll = {/\f x)Pdx: f € SHE (/P |de) -
U

Theorem 6. The quasilinear space L?>(R, )(C)) is complete with the norm given by (6), i.e.,
L%(R,Q(C)) is a Banach quasilinear space.

Proof. Let {F,}%°_; be a sequence in L?(R, Q}(C)) such that ¥ ||F|| < co. We will show that
k=1

the series Y Fy is convergent. For this we need to find a function F in L?(R, Q(C)) such that
k=1

lim o ( ZFk, =0

n—oo
k=1

where &> is the Hausdorff metric on the normed quasilinear space L?(IR, Q(C)). Now we
define the function g : R — R by

¢(x) = Y (IF@) o)
k=1

Applying the Monoton Convergence Theorem and Minkowski inequality prove that

[st dx—/ SR = [ AS(LIBINGES

n

n
. 1/2\2
—,}glgo/ (IR (0l o)) < fim, (3 / | Fex) I3 dx)/2)

= nlg{}o(k; I1Ell)? ; IEkl])?
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This shows that g is integrable function, since Y ||Fi|| is convergent. Thus, g(x) is finite for
k=1
any x € R and the series ) ||F(x)||, is convergent for any x € R. Due to the fact that Q(C)
k=1

is complete, we say that the series Y Fi(x) is convergent. Let us consider that the function
k=1
F:R — Q(C) defined by

{0y /8(x) =00

From the Proposition 6.1.13 in [12] we say that the set-valued function F is measurable. Since

F(x) = {sz"(x) /8(x) <09

2
|IF(x ”Q_ < (3 IE(x)]q)* = g(x)
Q k=1
and
/g(x)dx < o0
we have that [ ||F(x)||3 dx < oo. This implies F belongs to L2(IR, Q)(C)). Further, fora.e. x € R
R
n n
0% Jim ha( Y Filx), F() < Jim | ) B
k=1 k=1 0
Jim LA ()~ Jim F) i PR
and so .
lim o () F(x),F(x)) = 0. (13)

n—oo

Now we shall prove that the function series Y F; converges to F in L?(RR, )(C)) to complete
k=1

n
the proof. In accordance with this purpose we will show that lgrl hi2( ¥ F, F) = 0. Firstly, if
h—reo k=1
we use the Hausdorff metric on L?(IR, Q(C)), we say that for any ¢ > 0 there exist elements

. n n .
F! € L*(R,Q(C)), i = 1,2 such that ) F, < F+F, F < Y F+ F? and ||F!|| < r. Hence
k=1 k=1
n n
Y Fi(x) C F(x) + E}(x), F(x) € ¥ F(x) + F?(x) for a.e. x € R. Further, by the Hausdorff
= k=1

metric on Q(C) we have that ||F!(x)| < ha( f; F.(x),F(x)) +rforae. x € Randi = 1,2.
k=1

Moreover, for any r > 0
n
h 12 ( Z F, F ) <
k=1
Hence, we have proved the inequality

(Y B) < ([ (a3 (), F(x)))2dn) 2
k=1 R k=1

= (

. n
Fi(x) dx 172 < / (hao( Z %)) +1)2dx)/2.
A =
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Consequently,

n n
lim (hLz(k_Zle,F))z < lim hQ(];Fk(x),F(x))zdx.
- =

Using the Theorem 4 the above inequality gives

lin (12 kak,P»Z < [ (lim (ra (Y Fiw), F() )i
=1

n—o0
R

n
and this implies Jlim hi2( Y F, F) = 0 by the equality (13). So the proof is complete. O
© "k

Theorem 7. The quasilinear space L?(R, )(C)) is a Hilbert quasilinear space with the inner-
product given by (4).

Proof. We know that L?(R,Q(C)) is a inner-product quasilinear space with respect to the
inner-product given by (4). By the definition of norm obtained this inner-product we have
that

1/2
IFIl={ { [ 1f)Pdx : f € S2(F)}
R 0
Using the Lemma 4 and Theorem 6 show that L?(R, )(C)) is complete. Thus, L?(R, Q(C)) is
Hilbert quasilinear space. O

4 TRANSLATION, MODULATION AND DILATION OPERATORS ON L?(R, Q)(C))

In this section we introduce some important operators on L?(R, Q(C)).

Definition 16. (Translation) Fora € R and F € L?(R, Q(C)), the operator T, is defined by

(TE)(x) = E(x—a) = {(Tafu) (%) = fax—a) < fu €S E),m=1,2,-} (14

and is called translation by a, where T, is the translation operator on L,(R).

Note that 7,F is defined by the set of translations of countable measurable selections of F.
By using the Castaing’s theorem (see, [13]) we say that there exists a sequence (f,;) of measur-
able selections of F such that

Fix—a) = U(Tf) () = U fale =)

= U
n>1
This implies that F(x — a) which is the translation by 2 € R of a set-valued function F €
L%(R,Q(C)) can be written as (14). Hence the translation operator 7, is a natural generaliza-
tion of classical translation operator T, in this way.
Notation: We will often write 7,F (x) instead of (7,F)(x) and similarly for the other opera-
tors.

Translation operator 7, is a bounded linear operator between quasilinear spaces: Actually,
given any F,G € L?(R,Q(C)) and A € C we write

T.(F+G)(x) = (F+G)(x —a) = F(x —a) + G(x —a) = T,F(x) + T.G(x),
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Ta(AF)(x) = (AF)(x —a) = AF(x —a) = AT,F(x).

These show that
To(F 4+ G) = ToF + T,G and T,(AF) = AT,F. (15)

Also, if F < G then F(x) C G(x) for each x € R. Hence, for any x € R
T.F(x) = F(x —a) C G(x —a) = T,G(x). (16)

This implies 7,F < 7,G. By the (15) and (16) we say that 7, is linear in the meaning of Defini-
tion 9. Furthermore, if F € L2(IR, Q(C)), the change of variable z = x — a shows that

JITE@I3ax = [IFG=a)lddx = [IFE)3 4z (17)
R R R

and so

I7El = [IFll,

namely, 7, is bounded.
Now we will define the modulation and dilation operators in analogy to the definition of
translation operator.

Definition 17. (Modulation, Dilation) For a set-valued function F € L*>(RR,Q(C)) we define
the following operators:

(i) Forb € R, the operator &, is defined by

(EF)(x) = 2™F(x) = {(Epfa)(x) = &%y (x) : fu € SUF),n =1,2,..}

and is called modulation by b, where E,, is the modulation operator on L,(R). This defi-
nition shows that the modulation operator £, is a natural generalization of classical mod-
ulation operator Ey,.

(ii) Forc € R, the operator D, is defined by

1 x 1
(DeF)(x) = Z2F(2) = ADefulx) = —Zfu
and is called dilation by ¢, where D, is the dilation operator on Ly(R). Thus, we say that
the modulation operator D, is a natural generalization of classical modulation operator
DC.

(%) i fu€SYF),n=1,2,..}

It can be easily shown that £, and D, are bounded linear operators as per above.

Definition 18. Let X; and X, be Hilbert quasilinear spaces and T : X; — X, be a bounded
linear operator. The operator T* : X, — Xj is called the adjoint operator of T such that for any
x € Xjandy € Xo,

(Tx,y) = (x, T*y).

Definition 19. Let X be a Hilbert quasilinear space and T : X — X a bounded linear operator.
The operator T is self-adjoint it T = T* and is unitary if TT* = T*T = I.
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Proposition 4. The operators T,, £, and D, are unitary operators from space L?(R,Q(C)) to
L*(R,Q(C)). Further,

o T =Tu=(T0),
o &1 =E64=(&),
o D' =Dy = (De)".

Proof. We give a complete proof for the operator 7, since the proof is similar to the cases of
&, and D, Due to the assumption F € L2(IR, )(C)) and the equality (17) we say that 7, maps
L%(R,Q(C)) into L*(R, Q(C)). Now we will prove that 7, is unitary: The change of variable
z = x — a yields that

=

<7;Pr G> =

—

(4)
(TaF(x), G(x))qdx = [ (F(x—a), G(x))qdx
R

> =

—
~—

(F(z),G(z+a))qdz = (F,T-,G) .

I
A~

Hence by the definition of the adjoint operator 7,* we prove that 7, = 7_,. Moreover, it is not
hard to show that 7,7, = T,7—, = I and 7,;*T, = T_,7, = I. The calculations show that 7, is
unitary and 7,7 = T_, = (7,)*. O

Operators denoted by composition of some of the translation, modulation and dilation
operators appear in mathematics and engineering. For this purpose, the following Proposition
is useful.

Proposition 5. Forany a,b € R and c > 0, the following commutation relations hold:
(W) (To&F)(x) = 2™ F(x — a) = e~ 27(&, T,F)(x),
(@) (TaDcF)(x) = ZF (% — &) = (DeTaycF) (%),

(i) (Deo&yF)(x) = LeXTH/E(2) = (&, DcF) (x).

S
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Y il cTaTTi AOCAIAXYETHCS BaXKAMBUIA IIPOCTip (PYHKIIIM, SIKMIt CKAAAAETHCS 3 MHOXIMHHO3HA-
yHMX (PYHKIIM, BU3SHAUEHMX Ha MHOXMHI AIMICHMX YMCeA 3i 3HaUeHHSIMM Yy IPOCTOpPi BCiX KOMIIa-
KTHMX OITYKAMX IIAMHOXIH KOMIIA@KCHMUX UMCeA, AASL IKMX p-TUI CTeTliHb iXHbOI HOpMU iHTerpoB-
Hmit. 3aranroMm weit mpoctip mosHavaote LP (R, Q(C)) npu 1 < p < oo i BiH Mae aArebpaidHy
CTPYKTYpYy, JIOrO Ha3MBaIOTh KBa3iAiHIHMM MPOCTOPOM, IIO € y3araAbHEHHSIM KAACMUYHOTO AiHil-
HOTO IPOCTOPY. Aari BBOAUTBCSI CKaASPHMIL AOOYTOK (MHOXMHHO3HAUHII CKaASPHUIA AOOYTOK)
Ha L?(R,Q(C)) i, Ha HaII TIOTASIA, TIe BaXKAMBO AAS yIpaBAiHHSI iIHTepBaABHO3HAUHMMM AQHVUMU
Ta iHTepBaAbHOIO 06pobKOr0 cmrHaAiB. TakoX Ile MOXXHa BUKOPWMCTATH B Tepil HEUITKMX CIOAI-
BaHb. BusHaueHHs ckaasipHOro A06yTKy B L?(IR, ()(C)) 6asyeTbcst Ha MOHATTI iHTerpasy AyMaHa,
SIKMVA 32CTOCOBYETLCSI AAST iHTerpyBaHHSI MHOXMHHO3HAYHMX (PYHKII. M1 ToKa3yeMo, 10 IpOoCTip
L%(R,Q)(C)) e rirbbepToBuM KBasiAiHiiHMM mpocTopom. HacamkiHemns My 03HAYaEMO OTIepaTOPM
TIlepeHeCceHHsI, MOAYASIIIT Ta 3aTPUMKM, SIKi € TPhOMa OCHOBOIIOAOKHVIMY MHOXXMHHO3HAUHVMIH OTTe-
patopamu y riabbepToBoMy KBasiAitiiHOMY mpoctopi L2 (R, Q(C)).

Kntouosi cnoea i ppasu: TiabbepTiB KBa3iAiHIHMIA MpOCTip, MHOXIMHHO3HaUHA (PYHKIIisI, iHTeTpas
AymaHa, TIepeHeCceHHS, MOAYASIIIisI, 3aTPYMKa.
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MAKHNEI O.V.

MIXED PROBLEM FOR THE SINGULAR PARTIAL DIFFERENTIAL EQUATION OF
PARABOLIC TYPE

The scheme for solving of a mixed problem is proposed for a differential equation
or 0 oT
103 = 3¢ (03 )~ T

with coefficients a(x), g(x) that are the generalized derivatives of functions of bounded variation,
¢(x) > 0, c~!(x) is a bounded and measurable function. The boundary and initial conditions have
the form

nT(L7) + T (L 1) = 9o (T),

T(x,0) = ¢(x),
oT

where p1p2 <0, q142 > 0 and by ! (x, T) we denote the quasiderivative c(x)4;. A solution of this
problem we seek by the reduction method in the form of sum of two functions T(x, t) = u(x, ) +
v(x, T). This method allows to reduce solving of proposed problem to solving of two problems: a
quasistationary boundary problem with initial and boundary conditions for the search of the func-
tion u(x, ) and a mixed problem with zero boundary conditions for some inhomogeneous equation
with an unknown function v(x, 7). The first of these problems is solved through the introduction
of the quasiderivative. Fourier method and expansions in eigenfunctions of some boundary value
problem for the second-order quasidifferential equation (c(x)X’(x))/ —g(x)X(x) + wa(x)X(x) =0
are used for solving of the second problem. The function v(x, T) is represented as a series in eigen-
functions of this boundary value problem. The results can be used in the investigation process of
heat transfer in a multilayer plate.
Key words and phrases: mixed problem, quasiderivative, eigenfunctions, Fourier method.

{mm, )+ pa (0, 7) = g1 (1),

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: oleksandr.makhnei@pu.if.ua

INTRODUCTION

Boundary problems for differential equations of heat conduction with smooth coefficients
were studied quite comprehensively in the literature (e.g., see [7]). However, during the mod-
eling of heat transfer processes, the boundary problems with piecewise continuous coefficients
or coefficients that have generalized derivatives of discontinuous functions are often appeared.
Such problems have already begun to be studied in the works [2,5, 6].

The present paper deals with solving of a mixed problem for a partial differential equation
of parabolic type with coefficients that are the generalized derivatives of functions of bounded
variation. A reduction method [7] is used for solving of this problem. This method allows to
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reduce solving of this problem to solving of two problems: a quasistationary boundary prob-
lem with initial and boundary conditions and a mixed problem with zero boundary conditions
for some inhomogeneous equation. Fourier method and expansions in eigenfunctions of some
boundary value problem for the second-order quasidifferential equation are used for solving
of the second of these problems. In this paper we consider a more general statement of the
problem than in [2]. Moreover, it is proved the non-negativity of the eigenvalues, which is a
necessary condition for the correctness of the description of the heat transfer process.

Quasidifferential equations are equations that contain terms of the form (p(x)y(™))(),
These equations cannot be reduced to conventional differential equations by n-fold differenti-
ation if the coefficient p(x) is not sufficiently smooth. The introduction of quasiderivatives is
used for their research [3].

1 FORMULATION OF THE PROBLEM

Consider the next mixed problem for a partial differential equation of parabolic type. It is
necessary to find a solution T(x, T) of the equation

1035 = 5 (05 ) —s@)T 0

with boundary conditions

{plT(O, T) 4+ pzT,[(” (0,7) = P1(7), (2)

nT(0,7) + 0T (1, 7) = ya(v)

and initial condition
T(x,0) = ¢(x), €)
where a(x) = b'(x), g(x) = h'(x), b(x), h(x) are right continuous nondecreasing real functions
of bounded variation on the interval [0,1], c(x) > 0, c~!(x) is a bounded and measurable
function on the interval [0,1], ¢(x) is a continuous function on the interval [0,1], ¥1(7) and

P»(7) are continuously differentiable functions for T > 0, p1, p2, 41, g2 are real numbers,

d
pip2 <0, 192 = 0. By T,[Cl] (x,7T) i c(x)g—z we denote the quasiderivative. The primes in the

formulas a(x) = b'(x), g(x) = I (x) stand for the generalized differentiation, and hence the
functions a(x), g(x) are measures, i.e., a zero-order distributions on the space of continuous
compactly supported functions [1].
A solution of problem (1)—~(3) seek by the reduction method in the form of sum of two
functions
T(x,7) =u(x, ) +v(x,T). 4)

Any of functions u or v can be chosen by a special way, then another one will be determined
uniquely.

2  QUASISTATIONARY BOUNDARY PROBLEM FOR u(x, ”C)

We define u(x, T) as the solution of the boundary problem

9 <c(x)g—z> —gx)u =0, ©)
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1
pru(0,) + p2u (0,7) = 1 (), 6
i - (6)
qiu(l, ) + qoux (1L, T) = ¥a(7),

which is derived from problem (1)—(3), if T is a parameter. Here the quasiderivative u,[cu (x,7) i

c(x)2%, then g—z = % With the help of the vector 7 = (1, /)T equation (5) is reduced to the

ox”’ C)lc
u / 0 % u
[0 ) (oo 5) ()

system
Boundary conditions (6) are also represented in the vector form

P-ua(0,7)+ Q-u(l,t) =T(7), (8)

(0 0) e=(p o) o= (h3) ()

Suppose that we know the Cauchy matrix B(x, s) of system (7). It can be constructed, for ex-
ample, when the coefficients c(x) and g(x) are piecewise constant functions [4]. In the general
case, it is necessary to know the fundamental system of solutions of system (7) for construc-
tion the Cauchy matrix [4]. By [4], equation (5) with arbitrary initial conditions u(xg, T) = ug,
ulll(xg,T) = u1, xo € [0,1] has a unique solution in the class of absolutely continuous func-
tions, and the quasiderivative ull] of this solution has a bounded variation by the variable x on
the interval [0, I].

We have 7i(x, ) = B(x,0)ily, where iiy = ii(0, 7). We shall determine 7. From bound-
ary conditions (8) we obtain P - ilg + Q - B(1,0) - iip = [ whence i1y = (P + Q- B([,0))"!-T.
Therefore,

where

a(x,7) = B(x,0)- (P+Q-B(1,0)) "' - T (7). 9)

3 MIXED PROBLEM FOR (X, T)

We substitute u(x, T) and v(x, T) into equation (1)

a(x) <g—z + g—:) = % (c(x) <g—z + g—i)) —g(x)(u+0).

In consequence of (5) we have the equation
Jov 0 v ou
105 = 52 (c037) - )0 - a3 (10)

According to formula (9) the derivative % is a continuous function of the variable x on [0, ]
and so the last term in equation (10) is correct.

By taking into account formula (4), we define the boundary conditions for v from condi-
tions (2)

p11(0,7) + paul (0, 7) + p10(0,7) + p2ol ) (0,7) = 91 (1),
(1, T) + qul (1, 1) + g1o(1, T) + g200 (1, 7) = (7).
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By virtue of (6), we obtain

p1o(0,7) + paox (0,7) =0, an
q1o(l,T) + qp_v,[c}(l,r) =0.

The initial condition is determined similarly
af
0(x,0) = ¢(x) —u(x,0) = ¢(x). (12)

4 FOURIER METHOD AND EIGENVALUE PROBLEM

We search for non-trivial solutions of the homogeneous differential equation

050 = 57 (052 ) ~gx)o
with boundary conditions (11) in the form
v(x,T) =e “TX(x), (13)
where w is a parameter, and X(x) is a function. Then

—wa(x)e”TX(x) = (c(x)X'(x)) e™9T — g(x)X(x)e T,

whence we get the quasidifferential equation

(c(0)X' (x)) = g(x)X(x) + wa(x)X(x) = 0. (14)

Substituting formula (13) in boundary conditions (11), we obtain

p1X(0) +P2X[1]( 0) =0,
{th(l) +xll(D) =0, (15)

We denote by wy the eigenvalues of boundary problem (14), (15). Let Xi(wy, x) be the
corresponding eigenfunctions, k = 1,2,.. ., c.

By [8], all eigenvalues wj of boundary problem (14), (15) are real, there are a countable
number of them, and their set has not a finite limit point. The eigenfunctions X (wy, x) that
are corresponded to the different eigenvalues are orthogonal in the sense

/X Wi, X)Xy (W, x)db(x) =0,  wpy # wy.

We now prove that all of the eigenvalues wy of boundary value problem (14), (15) are non-
negative with the coefficients imposed in section 1.
To do this, we multiply both parts of the equation

(c(x) Xk (x))" = g(x) Xi (%) + wpa(x) X (x) = 0

by X (x) /
(c(x)Xi(x)) Xe(x) — g(x) X2 (x) + wia(x) X2 (x) = 0.
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Then, taking into account that X][{l] (x) = c(x) X} (x), after transformations we obtain

wpa(x)X2(x) = — (X ()X, () + X (2) XL (%) + g () X2 ().

By integrating both parts of the obtained ratio in the range from 0 to /, we will have

wr [ XEab(x) = ~XI0)X(0) + %0 %4(0)
0 (16)

+/ %) (XL (x 2dx+/Xk ().

Since the functions Xj (x) are absolutely continuous as a result of [4], and their quasideriva-

tives X][{l] (x) have a bounded variation on the interval [0, I], we see that all of the above trans-
formations have sense.
All integrals in formula (16) are non-negative. If p; = 0 or p, = 0, then X,[(l] (0)X,(0) = 0.

If p1p2 < 0O, then from the first condition of system (15) we have X][(l] (0) = —%Xk (0). Then
X, (0) X, (0) = —ELX2(0) > 0. Similarly, if g1 = 0 or g = 0, then X, (1) X (1) = 0, otherwise
X,[(l] (DX (1) = —Z—;X,%(l ) < 0. Consequently, it follows from formula (16) that all w;, > 0.

5 METHOD OF THE EIGENFUNCTIONS

We seek v(x, T) in the form of the series
oo

Z Xk Wi, X )l (17)

where X (wy, x) are the eigenfunctions of boundary problem (14), (15). We substitute formula
(17) into equation (10)

0 [ & d 0 [ &
alx) (kzl tk<r>xk) = (e(x)a (kzl tk<r>xk))
ou
Z tk Xk - El )aT
whence, under the assumption of uniform convergence of series (17) and series derived from

it by differentiation by x or T, we have

ou

) Y 50X = Y (1) (X)) = g(x)Xe ) —a(x) 5=
k=1 k=1
As a result of equation (14) there is equality

(c(x)X}) — g(x) Xy = —wia(x) Xy,

then
ou

x) Y ()X Z tr (T)wra(x) Xy — a(x)g.
k=1
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Therefore,

s 0
; ) + wit(T)) X = a: (18)

We expand the known function g” in a series in the eigenfunctions of boundary problem

(14), (15):

o]

de Xk W, X )r (19)

where
1 I'9u

IXill Jo ot
By substituting formula (19) into (18), we obtain

Ai(7) = Xl )b, 1%l = [ X, o).

t;((T) + wktk(r) = —dk(T), k=1,2,...,00. (20)

Since formulas (12) and (17), we have
Z te(0) Xk (wi, x) = ¢(x).
We expand the function ¢(x) in a series in the eigenfunctions

Z o Xe(wp x), o= HXkH/ %) X (g, %) db(x).

Consequently,
i'k(O) = Pk, k= 1,2,...,00. (21)

Then for all positive integer k we have Cauchy problems (20), (21) for ordinary differential
equations.
General solutions of linear inhomogeneous equations (20) acquire the formulas

T
te(T) = <Ck —/0 dk(s)e“’ksds> e~ VKT,

where Cy are arbitrary constants. Therefore, by using initial conditions (21), we find for each
positive integer k the solution of the corresponding Cauchy problem

te(T) = re” “FF —/ die(s)e 5T s,
0

Then, by virtue of formula (17), we obtain

[ee]

o(x,7) =) <goke_“’kT - /OT dk(s)e“’k(s_f)ds> Xy (wy, x).

k=1

Thus, by using the reduction method, Fourier method and the expansion in a series in
eigenfunctions, we built the solution of the boundary problem for the parabolic type partial
differential equation with distributions. The results can be used in the investigation of the
process of heat transfer in a multilayer plate.
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3ampoIOHOBAHO CXeMY PO3B’sI3yBaHHSI MilllaHOi 3aAadi AASI AMcpepeHITiaAbHOTO PiBHSHHS

1057 =5 () g0 T

3 koedpimieHTamm a(x), g(x), siki € y3araabHeHMMM OXiAHMMY PYHKLII 06MexxeHol Bapiawii, c(x) >
0, c~!(x) — obmexena i BumipHa dyrkuis. Kpaitosi i mouaTkoBa yMOBM MAOTh BUTASIA

{mm, )+ pa (0, 7) = g1 (1),
nT(L7) + T (L 1) = 9o (T),

T(x,0) = ¢(x),
aT

Ae p1p2 < 0, q192 > 0, a yepes Y (x, T) mo3HaYeHO KBas3imoxiaHy c(x)%y. Po3p’s30K i€l 3aaa-
ui [IYKa€eThCSI METOAOM PeAYKIIT y BUrAsiAl cymu ABox pyrkuint T(x, T) = u(x, ) + v(x, 7). Llen
METOA Aa€ 3MOTY 3BeCTU PO3B’SI3yBaHHsI ITOCTaBAEHOI 3apadi AO PO3B’SI3yBaHHSI ABOX 3aAay: Kpa-
110BOi KBasicTamioHapHOI 3aAaUi 3 TIOYATKOBMMM i KpallOBMMM YMOBAMM AAS BiAIITyKaHHS (PyHKIIIT
u(x, T) i MiIlTaHOI 3aAayi 3 HYABOBMMU KPalOBMMM YMOBAaMU AAST A€SIKOTO HEOAHOPIAHOTO PiBHSI-
HHSI 3 HeBiAOMOIO pyHKIieo v(x, T). Ilepmma 3 Imx 3apad po3B’sI3y€ThCS 3 AOIIOMOTO0 BBEACHHST
KBa3imoxiaHOi. AAsl pO3B’s3yBaHHSI APYTOi 3aAadyi 3aCTOCOBYEThcsl MeToA Dyp’e i po3BuHeHHS 3a
BAACHMMM (PYHKIISIMM AesTKOT KparoBoi 3aAaui AAsT KBasiAMdpepeHIiaAbHOTO PiBHSIHHS APYTOTO I10-
PSAKY (c(x)X’(x))/ —9(x)X(x) + wa(x)X(x) = 0. ®yHkuist v(x, T) MOAAETHCS Y BUTASIAL psIAy 3a
BAAacCHUMMM (pyHKIIstMM Liel KpaitoBoi 3aaaui. OTpuMaHi pe3yAbTaTV MOXHA BUKOPUCTOBYBATH AASI
AOCAiAXeHHS ITpoIlecy TeIAOIepeAadi B baraTomaposiit IANTI.

Kntouosi ciosa i ppasu: MilllaHa 3apava, KBasiloxiaHa, BAacHiI oyHKIT, MeToa Dyp’e.
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INVARIANT IDEMPOTENT MEASURES

The idempotent mathematics is a part of mathematics in which arithmetic operations in the reals
are replaced by idempotent operations. In the idempotent mathematics, the notion of idempotent
measure (Maslov measure) is a counterpart of the notion of probability measure. The idempotent
measures found numerous applications in mathematics and related areas, in particular, the opti-
mization theory, mathematical morphology, and game theory.

In this note we introduce the notion of invariant idempotent measure for an iterated function
system in a complete metric space. This is an idempotent counterpart of the notion of invariant
probability measure defined by Hutchinson. Remark that the notion of invariant idempotent mea-
sure was previously considered by the authors for the class of ultrametric spaces.

One of the main results is the existence and uniqueness theorem for the invariant idempotent
measures in complete metric spaces. Unlikely to the corresponding Hutchinson’s result for invariant
probability measures, our proof does not rely on metrization of the space of idempotent measures.

An analogous result can be also proved for the so-called in-homogeneous idempotent measures
in complete metric spaces.

Also, our considerations can be extended to the case of the max-min measures in complete metric
spaces.

Key words and phrases: idempotent measure (Maslov measure), iterated function system, invari-
ant measure.
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2 University of Rzeszow, 1 Prof. St. Pigonia str., 35-310, Rzeszéw, Poland
E-mail: mnatali@ukr.net (MazurenkoN.), zarichnyi@yahoo.com(Zarichnyi M.)

INTRODUCTION

The idempotent mathematics is a part of mathematics in which arithmetic operations on
the reals are replaced by idempotent operations (e.g., max, min; see [9]). According to an infor-
mal correspondence principle, every substantial notion of the (ordinary) mathematics has its
counterpart in the idempotent mathematics. In this way we obtain the notion of idempotent
measure, which is an idempotent analogue of that of probability measure. The idempotent
measures found numerous applications, e.g. in the optimization theory, mathematical mor-
phology, and game theory (see [2,12-15]).

Different aspects of the theory of idempotent measures are considered in [1,5,8,22]. In
particular, the topology of spaces of the idempotent measures on some compact metric spaces
is investigated in [5]. However, the theory of idempotent measures is considerably less devel-
oped than that of probability measures.

The mathematical foundations of the theory of deterministic fractals were created by Hut-
chinson [16]. In particular, he introduced the notions of invariant (self-similar) set and invari-
ant measure for an iterated function system (IFS) of contractions on a complete metric space.

YAK 515.12
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The existence of invariant measures is proved in [16] by using the Banach contraction principle
for suitable metrization of the set of probability measures on a metric space. The invariant
measures impose an additional structure on the invariant set for the given IFS.

In [4], the authors considered a modification of the notions of invariant set and invariant
probability measure, namely, the notions of in-homogeneous set and in-homogeneous proba-
bility measure (see also [17,18]). The inhomogeneous sets and measures are used, in particular,
in image compression (see, e.g., [19]).

The aim of this note is to introduce the invariant idempotent measures for given IFS. In
the case of idempotent measure, we use the weak* convergence for proving the existence of
invariant element. This approach seems to be fairly general and we anticipate new results in
this direction (see the concluding remarks).

Note also that the invariant idempotent measures on ultrametric spaces are introduced and
investigated in [11].

1 PRELIMINARIES

As usual, C(X) denotes the Banach space of continuous functions on a compact space X.
We endow C(X) with the sup-norm. For any ¢ € R, by cx we denote the constant function on
X taking the value c.

By A we denote the closure of a set A in a topological space.

Let Rmax = R U {—o0}. We use the following operations ®, @ of idempotent mathematics
(seee.g., [9]): xOy =x+y,and x ®y = max{x,y}, x,¥ € Rmax (convention: (—c0) @ x = x©®
(—00) = —00, (—0) B x = x B (—o0) = x). Also we consider the operations ®: R x C(X) —
C(X),A®¢=Ax+ ¢, and ®: C(X) x C(X) — C(X),(¢ ® ) = max{e, P}.

Definition 1.1. A functional ji: C(X) — R is called an idempotent measure (a Maslov mea-
sure) if

1 u(ex) =c,
2. u(c® @) =co ¢, and

3. uledy) =ulp) ©uyp)

(see, e.g., [22] and references therein for the history and motivations of the notion of Maslov
measure and Maslov integral).

By I(X) we denote the set of all idempotent measures on X.

Let dy (or 6(x)) denote the Dirac measure concentrated at x € X, i.e., 6x(¢) = ¢(x), ¢ €
C(X). Clearly, 6y € I(X). A more complicated example of an idempotent measure is y =
@ ,a; © Oy, where x; € X and &; € Rimax, 1 =1,...,1n,and ®}_ja; = 0.

We endow the set I(X) with the weak* topology. In the case of compact metrizable space
X, this topology is completely described by the convergent sequences: (y;)$°, converges to u
if and only if lim; , y;(¢) = u(¢), for all ¢ € C(X).

Given a map f: X — Y of compact Hausdorff spaces, the map I(f): I(X) — I(Y) is
defined by the formula I(f)(p)(¢@) = u(¢f), for every u € I1(X) and ¢ € C(Y). That I(f) is
continuous and that I is a covariant functor acting in the category Comp of compact Hausdorff
spaces and continuous maps was proved in [22].
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If f: A — X is an embedding of compact Hausdorff spaces, then so is the map
I(f): I(A) — I(X). We identify I(A) and the subspace I(f)(I(A)) via this embedding. The
support supp () of an idempotent measure y € I(X) is the minimal (with respect to inclusion)
closed subset A in X such that 4 € I(A). According to [7] one can define the space I(X) also
in non-compact case. If X is a Tychonov space, then let

I(X) = {u € I(BX) | supp(p) C X C X},

where BX stands for the Stone-Cech compactification of X.

Recall that a map f: X — Y of a metric space (X, d) into a metric space (Y, ) is called a
contraction if there exists ¢ € (0,1) such that o(f(x), f(v)) < cd(x,y), forall x,y € X.

By exp X we denote the hyperspace of a topological space X, i.e., the set of all nonempty
compact subsets of X. If (X, d) is a metric space, then exp X is endowed with the Hausdorff
metric dy,

dg(A,B) =inf{e > 0| A C O:(B), BC Os(A)},

where O,(C) stands for the r-neighborhood of a set C in X.

2 RESULT

Let X be a complete metric space and let fi, ..., f, be an Iterated Function System (there-
after IFS) on X. We assume that all f; are contractions. Let also «,...,a, € R be such that
@Z-lexi =0.

We denote by ¥ the identity map of exp X and, for i > 0, define ¥;: expX — expX
inductively: ¥;(A) = U1 (Fi—1(A)).

Let ®y: I(X) — I(X) be the identity map. For i > 0, define ®;: I(X) — I(X) inductively:
D;(n) = j=t.70 I(fj)(®i—1(p)). Thus, ®; = DDy - - - Dy (i times). It is easy to check that the
maps P; are well-defined. In this case, we say that y € I(X) is an invariant idempotent measure
if ®;(u) = pforeveryi =0,1,... (equivalently, ®;(u) = p).

Now, let T € I(X) and letay, ..., a,, a € Rbe such that (& ,a;) ®a = 0. Let &y = &y and
define ®;: I(X) — I(X) inductively: ®;(u) = 10 © I(f;))(®i-1(1)) ® « © 7. Following the
terminology of [17, 18] we say that /i € I(X) is an inhomogeneous invariant idempotent measure if
p=di(p).

Theorem 1. There exists a unique invariant idempotent measure for the IFS f,..., f, and
a1, .., 0y € Rwith®! ,a; = 0. This invariant measure is the limit of the sequence (®;(1))$;,
for arbitrary y € 1(X).

o0

Proof. Let u € I(X). We are going to prove that the sequence (®;(u)(¢))?>, converges for
arbitrary ¢ € C(X).

We first note that, without loss of generality, one may assume that X is compact. Indeed,
for every i > 0, we see that

(e 9]

supp (®;(u)) C ¥i(supp(p)) C |J ¥;(supp(n))
j=0

and the latter set is compact by [16].
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Let ¢ € C(X) and let ¢ > 0. There exists 7 > 0 such that, for every A C X, diam(A) < 5
implies diam(¢(A)) < e. There exists N € N such that for every k > N,

diam(f;, ... f;, (X)) <,
forevery iy, ..., i € {1,...,n}. Then

PN (1) (9) = P (0, ©--- Owiy) © u(@fiy .- fiy)

i1ein
=(wj, ©- - O wjy) O e f - fiy)
for some ji, ..., jn. By the choice of N,

p(x) —e < plofiy .- fiy) < (x) +e (1)
for every x € fj ... fj (X). There is j such that a; = 0. Then, for every k > 1,

®N+k(y)((l)> > (Oéjl ORRRNO, ‘X]'N> © H((Pfjl f]Nf] f])
k

Then also ¢(x) —& < pu(ofj, - f]Nf] fi) < ¢(x) +¢, forevery x € f; .. f]Nf] fi(X) C
k k
fir - - - fin (X). We conclude that @y (1) (@) > Pn (1) (@) — 2e and, since the sequence (®;(u))
is bounded, we conclude that there exists the limit of this sequence.
Now we are going to prove that the limit does not depend on the choice of u. Let also
v € I(X). Again, without loss of generality, one may assume that X is compact. Indeed, one
could let

X = |J ¥j(supp(p) Usupp(v)).
=0
Replacing u by v in (1) we obtain ®n.x(u)(¢) > Pn(v)(¢) — 2¢ and therefore
My oo Pk (1) (@) = limy 0o Pnik(p) > On (V) (@) — 2¢. From the latter inequality we obtain

lim @) (¢) > lim @n(v)() —2¢

and, because of arbitrariness of ¢ > 0, limy o, P(1) (@) > Imyn_ 00 PN (V) ().
Switching y and v we obtain the reverse inequality and therefore the equality.
Finally, the uniqueness of the invariant idempotent measure is an obvious consequence of
the above established fact that the limit lim;_,, ®;(¢) does not depend on the choice of .
U

Example 1. Let X = [0,1] and let f1, f,: X — X be given by the formulas: fi(t) = t/3,
f2(t) = (t+2)/3. The invariant set that corresponds to the IFS f1, f, is exactly the middle-
third Cantor set.

Leta; = 0and ay = —1. Let u = dy. Then, for everyn > 1,

m=00&s @ (- k)®5<i2>.

‘ . 3
1<ii<-+-<ix<n 1

Then the invariant idempotent measure corresponding to { f1, f2; a1, a2} is

. k2
lim =006 P (k)@&(Z :

l
1<iy <<y 137
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One can similarly prove the following result.

Theorem 2. There exists a unique inhomogeneous invariant idempotent measure for the IFS
fi,..., fnanday, ..., ay,a € R with (@?erxi) @ a = 0. This inhomogeneous invariant measure
is the limit of the sequence ($;(1))$>,, for arbitrary y € I1(X).

3 MAX-MIN MEASURES

Let R = Rpax U {00} = RU{—o00,0c0}. In the sequel, ® is used for min.
A functional p: C(X) — R is called a max-min measure if the following are satisfied:

1 u(ex) =c¢;
2. uleay) =ule) duyp);
3. ule® @) =cxu(e)

(see, e.g., [6] for details).

By J(X) we denote the set of all max-min measures on a compact Hausdorff space X. The
set J(X) is endowed with the weak*-topology. A base of this topology consists of the sets of
the form

{ne]JX) | |ulei) —vigi)| <e i=1,...,n},

where v € J(X), ¢; € C(X),i=1,...,n,n € N. Every map f: X — Y of compact Hausdorff
spaces induces amap J(f): J(X) — J(Y) defined as follows: J(f)(u)(¢) = u(¢f). Itis proved
in [6] that | is a functor acting in the category Comp. Similarly as above, one can consider the
spaces J(X) for Tychonov (in particular, metrizable) spaces X.

Let X be a complete metric space and let f1, ..., f, be an IFS on X. We assume that all f; are
contractions. Let also a1, ..., a, € R be such that D ja; = oo

Let ®): J(X) — J(X) be the identity map. For i > 0, define ®’: J(X) — J(X) inductively:
Qi) = 10 ® J(fi)(®i—1(n)). We say that u € J(X) is an invariant max-min measure if
@ (u) = pforeveryi =0,1,... (equivalently, ] (1) = p).

The following can be proved similarly as Theorem 1.

Theorem 3. There exists a unique invariant max-min measure for the IFS fi,..., f, and
&1, ..., 0n € Rwith®!_ a; = oo. This invariant measure is the limit of the sequence (®(u))$2,,
for arbitrary y € J(X).

The notion of inhomogeneous invariant max-plus measure can be defined similarly to that
of inhomogeneous invariant idempotent measure. One can also formulate (and prove) a coun-
terpart of Theorem 3 for the inhomogeneous invariant max-plus measures.

4 REMARKS AND OPEN QUESTIONS

Our construction is in a sense parallel to that of the invariant probability measure from [16].
The latter implicitly exploits the structure of monad for the probability measure functor P
(more specifically, the so-called multiplication map P> — P) and, in our case, the definition of
@ is based on the monad structure for the functor I (see [22]).
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The proof of existence of the invariant probability measure implicitly uses the existence
of a ‘nice’ functorial metrization of the spaces of probability measures of metric spaces.
In particular, this metrization satisfies the property that the mentioned multiplication map
P2(X) — P(X) is nonexpanding and it is well-known that the Kantorovich metrization is as
required [16,21]. Note that a metrization of the spaces I(X) is constructed in [5]. However, it is
not known whether the multiplication map I?(X) — I(X) is non-expanding, for a metric space
X. Taras Banakh informed the authors that one can construct a metrization of the spaces I(X)
which allows for applying Banach’s contraction principle. As far as we know, his result is not
published. Remark that the existence of invariant objects for IFSs in some general assumptions
was considered in [3].

Some other generalizations can be made for the so called Lawson monads in the category
Comp introduced by T. Radul [20].

Note that in [10] the first-named author considered the invariant inclusion hyperspaces for
IFSs in complete metric spaces.
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Masypenxo H., 3apiurmit M. [nsapianmni idemnomenmni mipu // Kaprarceki MaTeM. my6a. — 2018.
—T.10, Ne1. — C. 172-178.

IneMITOTEHTHa MaTeMaTHKa € JaCTMHOIO MaTeMaTVKM, B sIKilf apudpMeTHdUHi orepariii Ha MHO-
KMHI AIVICHMX UMCeA 3aMiHIOIOTBCSI iAeMITIOTEHTHMMM OIlepamisiMi. Y iAeMIIOTeHTHil MaTeMaTHIl
TIOHSITTSI iAeMIIOTeHTHOI Mipu (Mipy MacAoBa) € BiATTOBiAHMKOM IOHSITTSI IMOBipHicHOI Mipn. Iaem-
TIOTEHTHI Mipy 3HAWITIAY UMCAEHHI 3aCTOCYBaHHS B MaTEeMAaTHUII Ta CyMiXHIMX 06AACTSIX, 30KpeMa, B
Teopil onTMMi3alii, MaTeMaTH4Hil1 Mopdroaorii Ta Teopil irop.

Y miji 3aMiTIi MM 3aIIpOBaAXyEeMO MOHSITTS iHBapiaHTHOI iA@MIIOTeHTHOL MipM AAsI iTepOBaHOI
cucTeMu (pyHKIIN y TOBHOMY MeTpUMYHOMY npocTopi. Lle iaeMIOTeHTHII aHAAOT TIOHSITTS iHBapi-
aHTHOI iMOBipHicHOI Mipy, o3HaueHOi ['aT4iHCOHOM. 3ayBakMO, 1110 TIOHSITTSI iHBapiaHTHOI iAeMIIO-
TeHTHOI Mipy paHillle PO3rASIAAAOCS aBTOPaMU AAST KAACy YABTPaMeTPUYHIMX IIPOCTOPIB.

OAHIMM 3 OCHOBHMX pe3yAbTaTiB € TeOpeMa iCHyBaHHSI Ta EAMHOCTi AAS iHBapiaHTHMX iAeMIIOTeH-
THIMX Mip y TIOBHMX MeTpUUHMX OpocTtopax. Ha BiaMiHY Bia BiATIOBiAHOTO pe3yAbTaTy 'aTuiHcoHa
AASL iIHBapiaHTHMX iIMOBIpHICHMX Mip, Hallle AOBeAEHHSI He OIMPAEThCsl Ha MeTPM3allilo IPOCTOPY
IAeMIIOTeHTHMX Mip.

AHaAOTiUHMIA pe3yAbTaT MOXHA TaKOX AOBECTU AASI TaK 3BaHMX HEOAHOPIAHMX iA@MIIOTEeHTHUX
Mip y HOBHUX METPUYHMX IPOCTOPaX.

Takox Hamr MipKyBaHHS MOXHa IOIIMPUTM Ha BAIIAAOK Max-Min Mip y MOBHUX MeTPUYHMUX
IIpOCTOpax.

Kntouosi cnosa i ppasu: iremroreHTHa Mipa (Mipa MacaoBa), cucTeMa iTepoBaHNX BiaO6pakeHb,
iHBapiaHTHa Mipa.
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ON THE STRUCTURE OF LEAST COMMON MULTIPLE MATRICES FROM SOME
CLASS OF MATRICES

For non-singular matrices with some restrictions, we establish the relationships between Smith
normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith
normal form) of two matrices with corresponding matrices of their least common right multiple
over a commutative principal ideal domains. Thus, for such a class of matrices, given answer to the
well-known task of M. Newman. Moreover, for such matrices, received a new method for finding
their least common right multiple which is based on the search for its Smith normal form and
transforming matrices.

Key words and phrases: Smith normal form, transforming matrices, least common multiple ma-
trices, commutative principal ideal domain .

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: romaniv_aQukr.net

INTRODUCTION

Among the different problems and methods of their solutions that are considered in the
commutative ring theory the special role is played by those that are similar to integer arith-
metic ones, and they are the essential part of rings arithmetics. One of the mentioned prob-
lems, that are connected to the elementary divisibility theory, is how one can find the great-
est common divisor and the least common multiple of given matrices over some ring and
when such objects exist. The research in the area of such problems has started at the be-
ginning of 20th century. Due in essence to E. Cahen and A. Chatelet, C. MacDuffee [4] has
proposed elegant method of finding the greatest common divisor and the least common mul-
tiple of matrices using their Hermite forms. M. Newman and R. Thompson [10] studied the
question: how to find the invariant multipliers of greatest common divisor and least common
multiple of matrices over commutative principal ideal domains. The similar researches over
the Euclidean domains became rather active in the recent years, as can be seen in the works
of V. Nanda [5] , C. Yang, B. Li [1], S. Damkaew, S. Prugsapitak [2], N. Erawaty, M. Bahri,
L. Haraynto, A. Amir [3] et al. In the current research author propose a method how to find
least common multiple of matrices over commutative principal ideal domains, based on the
properties of their Smith normal forms and the invertible matrices that transform these matri-
ces to their Smith normal forms.

Let R be a commutative principal ideal domain with 1 # 0, M,,(R) be a ring n x n matrices
over R. Consider a nonsingular matrix A € M;(R). Since R is a principal ideal domain there
are invertible matrices P4, Q 4, such that

PAAQA =E= diag(l,e,...,e).

YAK 512.64
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The matrix E above is called the Smith normal form or (canonical diagonal form) of matrix
A, and matrices P4 and Q4 are left and right transforming matrices of A respectively.

By P4 we denote the set of all left transforming matrices of matrix A. According to the
results [8,11] we know that P4 = GgP4 , where

Gg = {H € GL,(R) | 3H; € GL,(R) : HE = EH }.

Note that it is a multiplicative group.
Suppose that the greatest common divisor of minor of size n — 1 of matrix B equals 1. Then

B ~ A =diag(1,...,1,9).
In the following we will use the set of matrices
L(E,A) ={L € GL,(R) | 3L1 € My(R) : LE = AL},

which is called a generating set (introdused by V. Shchedryk [8]).

If A = BC, then we will say that B is a left divisor of matrix A and A is a right multiple of
B.

Moreover, if M = AA; = BB then the matrix M is called a common right multiple of
matrices A and B. If in addition the matrix M above is a left divisor of any other common right
multiple of matrices A and B then we say that M is a least common right multiple of A and
B. ([A, B]; in notation).

By the symbols (a,b) and [a, b] we denote the greatest common divisor and the least com-
mon multiple of the elements a and b respectively, and the notation 4|b means that the element
a divides the element b.

1 MAIN RESULTS
Lemma 1. Let PsP,;' = S = ||s;j||| . Then the element ((¢,6),s,1) is an invariant with respect
to transforming matrices Pg and P4.

Proof. Let F4 € P4 and Fp € Pp be some other left transforming matrices of A and B. Then
exist matrices Hy € Gg and Hp € Gy such that F4 = H4P4, Fg = HpPg. Consider the
following product of the matrices:

FgFy' = HpPp(HaPa)~' = HpPpPy'Hy' = HpSH, ',
where S = PgP, . Let’s denote HpS = | k;;|;. In view of Corollary 6 [8] Hj is of the form

hin ... g1 i
Hp =
B hnfl.l hnfl.nfl hnfl.n
5hn1 (5hn.n71 hnn
Hence,
511
knle Ohpr «.. Ohpp-1 han H
Sn—1.1
Sn1

=0(hps11 + -+ hpn—150-11) + hunsm = 0l + hynSp1.
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Consider the following greatest common divisor:
((&, 6),kn1) = ((&, 6), Ol +hunsu1) = ((&,9), hunSn1)-
The invertibility of Hg implies that (6, h,,) = 1. Therefore, ((¢,6), hyn) =1 and
((&, 8),kn1) = ((&6),5m1)-

Let’s denote SH, ' = ||t;;||{- Since H," € Gg then according to Corollary 6 of [8] the matrix
H " has the form

011 012 ... U1

-1 _ €071 U2 ... Uyy

H, =
Svnl Unz oo vnn
Hence,
o1
€021
tn = H Snl Sn2 --- Sun H . = 51011 + €(Sp2021 + - - + Sun¥p1)-
E0n1
Consider

((&,0),tn1) = ((&,0), 501011 + €(502021 + ... + Sunvn1)) = ((&,9),511711)-

Since (g,v11) = 1, then ((g,0),s,1v11) = ((¢,0), 541). Hence

((&,0), tn1) = ((&,6),5m)-

Applying the associativity of M, (R) completes the proof. O
Lemma 2. Let S = [[s;]|f € GLu(R), Q = diag(wy,wy,...,wn), where w; | w1,
i=12,...,n—1,andE | Q,A | Q. Inorder toSL4, = Lg, where L4 € L(Q,E), Ly € L(Q),A)
it is necessary and sufficient that (a,b) | s,;, wherea = G 2}1)’ b= @ 221)'

Proof. Necessity. Since E | () then according to Corollary 5 of [8] matrices L4 and Lp are of
forms:

P11 P12 --- Pin q11 . d1.n—1 qin
TP P2 ... Pan q21 . q2.n—1 q2n
LA - (S,wl.) . 7 LB — . . . ’
€ 0 )
anl Pn2 --- Pun (5,—“}1)‘7111 e mqn—l.n—l Ann

respectively. Using the Property 4.8 [9], in this case, the set L(Q),E) is a group. Then S =
LgL7!, where Lzl € L(QO,E). It follows that

€ )
(Sr w1>’ (5/ wl)

(

) |Sn1-

If we denote a = (&fdl)’ b= ( 5,2)1) then we will get that (a,b) | s,1.
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Sufficiency. Let s,; = (a,b)t. By Theorem 2.13 [9] there exist some matrices H; € G, and
U € Gg such that

1 0 .. 0 0
koy 1 - 0 0
Hsu=| o =2
Ky 1
kp-11 kpo12 ... 1 0
(l;l, b>kn1 kn2 oo kn.nfl 1
. . : : : K;i' o
Obviously, Ky; is invertible. Hence there exists some matrix Hy = 0 1 € G such that
1 0o ... 0 0
1 ... 0 0
HyH;SU = : : C || =K
0 0o ... 1 0
(LZ, b)knl knp oo kyn—1 1

Since Hy, H, € Gp then H; = HyH; € G,. Therefore K = H3SU. Moreover, one can find
v1,02 € R such that
(a,b)k,1 = (av1 + bvy)kyy = avik,y + booky;.

If we consider the matrices

1 0 0 O
0 1 ... 0 O
Hy = e | S A (O LY
0 0 1 0
vaknl 0 0 1
and
1 0 0 0
1 0 0
V= ... || € L(QLE).
0 0 1 0
—avikyy —kpo ... —kpuo1 1

we obtain that H3SUV = Hy. Then SUV = Hy TH,. Using Properties 2 and 3 [8] we will have
H§1H4 =L e L(O,A), UV =Ly € L(),E), and so SL4 = L which had to be proved. =

Theorem 1. Let R be a commutative principal ideal domain and let
A ~diag(l,e,...,€), B~diag(1,...,1,9),
PgP,' = ||s||%, Pp € Pp, P4 € P4. Then
[A,B]y = (LaPa)'Q = (LpPs) ',

where

Q= diag(%,e, 8 186]),

L4, L belong to sets L(Q), E), L(Q), A) respectively and satisfy the equality:
(PgP;")La = L.
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Proof. Remark that according to Lemma (1), the element ((g, 6),s,,1), and hence the matrix Q),
does not depend on the choice of transforming matrices P4 and Pg.
By Theorem 2 [6] the Smith normal form of the greatest common left divisor of the matrices
A and B is of the form
(A,B); ~diag(1,...,1,(g,0,541)).

According to Corollary 1.5 [9] we obtain
+det AdetB = det(A, B),det[A, B,

i.e.
detAdetB "1

detlA Bl = 2 A By~ T e 0,5m)

= Wwiwr ... Wy_1Wy.

It follows from [10] that w, = [¢,6] and w; | ¢,i = 2,...,n— 1. Since E | Q) then ¢ | w;, for
i=2,...,n—1,thatisw; =¢,i =2,...,n— 1. Hence,
e 15(e, ) N (e,6)

w1 = e”—zeé(e,é,snl): (€,6,80m)"

Taking into account that the invariant factors of matrix are chosen precisely to the divisors of
unit, we obtain that the Smith normal form of the least common right multiple of matrices A
and B has the form:

Q= diag(ﬂ € ...,&¢0]).

((¢,6),5m)
By Lemma 1 [7] we will have
€ ) B (¢,9)
oy Ten) = Eown) = *
Since wy = %, then

(9) __ (&9)((&9),5m)

T @0 ) @O0 s5m), ()

= ((&,6),5m)-

This means that y | s,1. According to Lemma (2) there exist matrices Ly € L((),E), Lp €
L(Q), A) such that PgP, 'Ly = Lg, so

P,'LaQ =Py 'LpQ = M.

Since E | QY and A | ), then using Theorem 1 [8] the matrix M is the common right multiple of
A and B.

Let N be least common right multiple of matrices A and B. From the above, it follows
that N ~ Q. Hence N = P,'QQy'. Then M = P,'L,Q = P,,!Q) is a right multiple of N :
M = NNj. According to Theorem 1 [8] this is equivalent to the fact that Py = LPy;, where
L € L(Q), Q). Using Property 4.6 [9] we get the equality L(Q2, Q)) = Gq. Then by Corollary
2 [8] the matrices M and N are right associated. Thus, M is the least common right multiples
of matrices A and B. The theorem is proved. O
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AAsT HeOCODAMBIIX MaTpMIIb, TPV IIeBHMX 0OMeXXEHHSIX, BCTAHOBAEHO B3a€MO3B’sI3KM MiX cpop-
mamy CMiTa Ta HepeTBOPIOBAABHMI MaTPULISIMM (06OPOTHIMY MaTPUIISIMI, ITIO 3BOASITH MAaTPUIIO
20 ii popmu CmiTa) ABOX MaTPUIIb 3 BiATIOBIAHMMI MaTPUIISIMA IX HAJIMEHILIOTO CIIIABHOTO ITPaBOro
KPaTHOTO Haj KOMYTaTVBHMMI OOAACTSIMM FOAOBHMX ineaniB. Tum cammM, AAsI TaKOTO Kaacy Ma-
TpMIIb, AAHO BiAIIOBiAb Ha BiaoMY 3apady M. HeroMeHa. Biabllle TOro, AAsI Taxyux MaTpuilb, BKa3aHO
HOBUMII METOA 3HaXOAXKEeHHs iX HalIMeHILIOrO CIiABHOTO IPaBOrO KPaTHOTO, SIKMX I'PYHTYETbCSI Ha
nomryKy vioro cpopmu CMiTa Ta mepeTBOPIOBAABHMX MaTPULIb.

Kntouosi croea i ppasu: dpopma CmiTa, mepeTBOPIOBaAbHI MaTpuili, HaliMeHIIIe CITiAbHE KpaTHe
MaTpuIIh, KOMyTaT/BHA 06AACTb TOAOBHMX iAeaniB.
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SIGNLESS LAPLACIAN DETERMINATIONS OF SOME GRAPHS WITH
INDEPENDENT EDGES

Let G be a simple undirected graph. Then the signless Laplacian matrix of G is defined as
D¢ + Ag in which D¢ and A denote the degree matrix and the adjacency matrix of G, respectively.
The graph G is said to be determined by its signless Laplacian spectrum (DQS, for short), if any
graph having the same signless Laplacian spectrum as G is isomorphic to G. We show that G LI 7K,
is determined by its signless Laplacian spectra under certain conditions, where r and K, denote a
natural number and the complete graph on two vertices, respectively. Applying these results, some
DQS graphs with independent edges are obtained.
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INTRODUCTION

All graphs considered here are simple and undirected. All notions on graphs that are not
defined here can be found in [13,16]. Let G be a simple graph with the vertex set V = V(G) =
{v1,...,v,} and the edge set E = E(G). Denote by d; the degree of the vertex v;. The adjacency
matrix Ag of G is a square matrix of order n, whose (i, j)-entry is 1 if v; and v; are adjacent
in G and 0 otherwise. The degree matrix D¢ of G is a diagonal matrix of order n defined as
D¢ = diag(dy,...,dy). The matrices Lg = Dg — Ag and Qg = D¢ + Ag are called the
Laplacian matrix and the signless Laplacian matrix of G, respectively. The multiset of eigenvalues
of Q¢ (resp. Lg, Ag) is called the Q-spectrum (resp. L-spectrum, A-spectrum) of G. For any
bipartite graph, its Q-spectrum coincides with its L-spectrum. Two graphs are Q-cospectral
(resp. L-cospectral, A-cospectral) if they have the same Q-spectrum (resp. L-spectrum, A-
spectrum). A graph G is said to be DQS (resp. DLS, DAS) if there is no other non-isomorphic
graph Q-cospectral (resp. L-cospectral, A-cospectral) with G. Let us denote the Q-spectrum
of G by Specy(G) = {[m]™, [g2]"2, ..., [qn]™"}, where m; denotes the multiplicity of q; and
12422 ... 2 qn
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The join of two graphs G and H is a graph formed from disjoint copies of G and H by
connecting each vertex of G to each vertex of H. We denote the join of two graphs G and H by
GVH. The complement of a graph G is denoted by G. For two disjoint graphs G and H, let
G U H denotes the disjoint union of G and H, and rG denotes the disjoint union of r copies of
G,ie, rG=GU...UG,

N———

r—times
Let G be a connected graph with 7 vertices and m edges. Then G is called unicyclic (resp.

bicyclic) if m = n (resp. m = n + 1). If G is a unicyclic graph containing an odd (resp. even)
cycle, then G is called odd unicyclic (resp. even unicyclic).

Let C;, Py, K, be the cycle, the path and the complete graph of order 1, respectively. K ;
the complete bipartite graph with s vertices in one part and ¢ in the other.

Let us remind that the coalescence [21] of two graphs G; with distinguished vertex v; and G,
with distinguished vertex v,, is formed by identifying vertices v; and v; that is, the vertices v;
and v, are replaced by a single vertex v adjacent to the same vertices in G; as v; and the same
vertices in G, as v,. If it is not necessary v; or v; may not be specified.

The friendship graph F, is a graph with 2n + 1 vertices and 31 edges obtained by the coales-
cence of n copies of C3 with a common vertex as the distinguished vertex; in fact, F; is nothing
but K;VnKs.

The lollipop graph, denoted by H,, p, is the coalescence of a cycle C, with arbitrary distin-
guished vertex and a path P, with a pendent vertex as the distinguished vertex; for example
Hij ¢ is depicted in Figure 1 (b). We denote by T'(a, b, c) the T-shape tree obtained by identifying
the end vertices of three paths P,2, P, 5 and P.y». In fact, T(a, b, c) is a tree with one and only
one vertex v of degree 3 such that T'(a,b,c) — {v} = P11 U Py q U P.yq; for example T(0,1,1)
is depicted in Figure 1 (a).

Figure 1: (a) The T-shape tree T(0,1,1) (b) The lollipop graph Hi1 6

A kite graph Kiy, 4 is a graph obtained from a clique K, and a path P, is the coalescence
of Ky with an arbitrary distinguished vertex and a path P,,_;,+1 with a pendent vertex as the
distinguished vertex. A tree is called starlike if it has exactly one vertex of degree greater than
two. We denote by U, ,,—, the graph obtained by attaching n — r pendent vertices to a vertex of
C;. In fact, U, ,—, is the coalescence of Kj ,_,_1 and P,,_;+1 where distinguished vertices are
the vertex of degree n — r and a pendent vertex, respectively. A graph is a cactus, or a treelike
graph, if any pair of its cycles has at most one common vertex [35]. If all cycles of the cactus
G have exactly one common vertex, then G is called a bundle [12]. Let S(n,c) be the bundle
with n vertices and ¢ cycles of length 3 depicted in Figure 2, where n > 2c +1 and ¢ > 0.
By the definition, it follows that S(n,¢) = K1V (cKy U (n —2c — 1)Kj). In fact S(n,c) is the
coalescence of F. and Kj ,_».—1 where the distinguished vertices are the vertex of the degree
2c and the vertex of the degree n — 2c — 1, respectively.
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n—2c—1

Figure 2: The bundle S(n, ¢)

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H,
denoted by G o H, is the graph with n 4 mn vertices obtained from G and n copies of H by
joining the i-th vertex of G to each vertex in the i-th copy of H (i € {1,...,n}); for example
C4 0 2K; is depicted in Figure 3.

® ®
[ L 4 4 L
[ L 4 L 4 ®
[} [ ]

Figure 3: C4 0 2K

A complete split graph CS(n, a), is a graph on n vertices consisting of a clique on n — « vertices
and an independent set on the remaining & (1 < & < n — 1) vertices in which each vertex of the
clique is adjacent to each vertex of the independent set. The dumbbell graph, denoted by Dy, 4, is
a bicyclic graph obtained from two cycles C,, C; and a path Py, by identifying each pendant
vertex of P, with a vertex of a cycle, respectively. The theta graph, denoted by ®, ., is the
graph formed by joining two given vertices via three disjoint paths Py, Ps and P;, respectively,
see Figure 4.

Figure 4: The graphs D, ; ;, and Oyt

The problem “which graphs are determined by their spectrum?” was posed by Giinthard
and Primas [24] more than 60 years ago in the context of Hiickel’s theory in chemistry. In
the most recent years mathematicians have devoted their attention to this problem and many
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papers focusing on this topic are now appearing. In [36] van Dam and Haemers conjectured
that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are
known to be determined by their spectra is too small. So, discovering infinite classes of graphs
that are determined by their spectra can be an interesting problem. Cvetkovi¢, Rowlinson and
Simié in [17-20] discussed the development of a spectral theory of graphs based on the signless
Laplacian matrix, and gave several reasons why it is superior to other graph matrices such as
the adjacency and the Laplacian matrix. It is interesting to construct new DQS (DLS) graphs
from known DQS (DLS) graphs. Up to now, only some graphs with special structures are
shown to be determined by their spectra (DS, for short) (see [1-11,15,17,19,22,23,25-34, 38—41]
and the references cited in them). About the background of the question "Which graphs are
determined by their spectrum?”, we refer to [36,37]. For a DQS graph G, GVKj is also DQS
under some conditions [30]. A graph is DLS if and only if its complement is DLS. Hence we
can obtain DLS graphs from known DLS graphs by adding independent edges. In [25] it was
shown that G U rKj is DQS under certain conditions. In this paper, we investigate signless
Laplacian spectral characterization of graphs with independent edges. For a DQS graph G, we
show that G LI rK; is DQS under certain conditions. Applying these results, some DQS graphs
with independent edges are obtained.

1 PRELIMINARIES

In this section, we give some lemmas which are used to prove our main results.

Lemma 1 ([17,19]). Let G be a graph. For the adjacency matrix of G, the following can be
deduced from the spectrum.

(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.
For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.
For the signless Laplacian matrix, the following follow from the spectrum:

(5) The number of bipartite components, i.e., the multiplicity of the eigenvalue 0 of the sign-
less Laplacian matrix is equal to the number of bipartite components.

(6) The sum of the squares of degrees of vertices.

Lemma 2 ([17]). Let G be a graph with n vertices, m edges, t triangles and the vertex degrees

di,do, ..., dy. If Ty = i 7:(G)¥, then we have
i=1

n n n
To=n Ti=Y di=2m To=2m+)Y.d7, Tz=6t+3) di+) d.
i=1 i=1 i=1 i=1
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For a graph G, let P (G) and Po(G) denote the product of all nonzero eigenvalues of Lg
and Qg, respectively. Note that P (Ky) = Po(K3) = 2. We assume that P;(G) = Po(G) = 1if
G has no edges.

Lemma 3 ([16]). For any connected bipartite graph G of order n, we have Po(G) = Pr(G) =
nt(G), where T(G) is the number of spanning trees of G. Especially, if T is a tree of order n,
then PQ(T) = PL(T) = n.

Lemma 4 ([32]). Let G be a graph with n vertices and m edges.
(i) det(Qg) = 4 if and only if G is an odd unicyclic graph.

(i) If G is a non-bipartite connected graph and m > n, then det(Qg) > 16, with equality if
and only if G is a non-bipartite bicyclic graph with C4 as its induced subgraph.

Lemma 5 ([16]). Let e be any edge of a graph G of order n. Then
71(G) 2 q1(G—¢) 2 92(G) =2 q2(G—¢) = ... = 9u(G) = qu(G —e) > 0.
Lemma 6 ([21]). Let H be a proper subgraph of a connected graph G. Then q1(G) > q1(H).

Lemma 7 (21]). Let G be a graph with n vertices and m edges. Then q1(G) > %2, with equality
if and only it G is regular.

Lemma 8 ([17]). For a graph G, 0 < q1(G) < 4 if and only if all components of G are paths.

Lemma 9 ([36]). A regular graph is DQS if and only if it is DAS. A regular graph G is DAS
(DQS) if and only if G is DAS (DQS).

Lemma 10 ([19]). Let G be a k-regular graph of order n. Then G is DAS when k ¢
{0,1,2,n—3,n—2,n—1}.

Lemma 11 ([15]). Let G be a k-regular graph of order n. Then GVK;j isDQS fork € {1,n — 2},
fork =2 andn > 11. Fork = n — 3, GVK; is DQS if and only if G has no triangles.

Lemma 12 ([30]). Let G be a k-regular graph of order n. Then GVK; is DQS fork € {1,n — 2}.
Fork = n — 3, GVK; is DQS if and only if G has no triangles.

Lemma 13 ([25]). The following hold for graphs with isolated vertices:

(i) LetT be a DLS tree of order n. Then T U rKj is DLS. If n is not divisible by 4, then T LI Ky
is DQS.

(ii) The graphs P, and P, U rK; are DQS.
(iii) Let G be a graph obtained from K,, by deleting a matching. Then G and G LIrK; are DQS.

(iv) A (n — 4)-regular graph of order n is DAS (DQS) if and only if its complement is a 3-
regular DAS (DQS) graph.

(v) Let G be a (n — 3)-regular graph of order n. Then G U rK; is DQS.

Now let us list some known families of DQS graphs.
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Lemma 14. The following graphs are DQS.
(i) The graphs Py, Cy, Ky, Kiyym, rKy, Py, U Py, U .. .U Py, and Cypy U Cy, UL . LGy, [36].
(ii) Any wheel graph K1V Cy, [26].
(iii) Every lollipop graph Hy, ,, [41].
(iv) Every kite graph Ki,, ,_1 forn > 4 andn # 5, [23].
(v) The friendship graph F,, [38].
(vi) (CnotKy), forn ¢ {32,64} and t € {1,2}, [14,32].
(vii) The line graph of a T-shape tree T(a,b,c) except T(t,t,2t + 1) (t > 1), [39].
(viii) The starlike tree with maximum degree 4, [34].
(ix) Uy p—r forr > 3, [27].
(x) CS(n,a) whenl1l < a <n-—1andwa # 3, [22].
(xi) Forn > 2c+1andc > 0, m and S(n, c) except for the case of c = 0 and n = 4, [29].
(xii) Ky ,_1 forn # 4, [29].

(xiii) GVKy, where G is an (n — 2)-regular graph on n vertices, and K, VK, except forn = 3,
[28].

(xiv) All dumbbell graphs different from D5, , and all theta graphs, [40].

It is easy to see that Kj 3 and K3 U Ky are Q-cospectral, i.e., Spec(Ky,3) = Spec(Ks) =
{[4]*,[1)%,[0]'}. Therefore, S(n,c) is not DQS when ¢ = 0 and n = 4, since S(n,0) is nothing
but Kin-1.

2 MAIN RESULTS

We first investigate spectral characterizations of the union of a tree and several complete
graphs Kj.

Theorem 1. Let T be a DLS tree of order n. Then T UrK; is DLS for any positive integer r.
Moreover, if n isodd andr = 1, then T LK, is DQS.

Proof. Forn,r € {1,2} see Lemma 13 (i) and Lemma 14 (i). So, one may suppose that n, 7 > 3.
Let G be any graph L-cospectral with T U rK;. By Lemma 1, G has n + 2r vertices, n — 1 +r
edges and r 4+ 1 components. So each component of G is a tree. Suppose that G = Gy U G1 U
... U Gy, where G; is a tree with n; vertices and ng > ny > ... > n, > 2. Forn;,n, € {1} see
Lemma 13 (i) and Lemma 14 (i). Hence we consider n,n;,r > 2. Since G is L-cospectral with
T L 7Ky, by Lemma 3, we get

nohy...Ny = PL(G0> e PL(GY) = PL(G() U...ud Gy) = PL(G> = PL(T>PL(K2)r =n2".
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We claim that n, = 2. Suppose not and so n, > 3. This means that ny > ny > ... > n, > 3.

2 )
Hence n2" = ngny...n, > 3 +lor n(g)r > 3. Now, if r — o0, then 0 > 3, a contradiction. So,

we must have 1, = 2. By a similar argument one can show thatn; = ... = n,_1 = 2 and so
no = n. Hence G = Go U rKj3. Since G and T U rK; are L-cospectral, Gy and T are L-cospectral.
Since T is DLS, we have Gy = T, and thus G = T LU rKj5. Hence T U rK5 is DLS.

Let H be any graph Q-cospectral with T UrK,. By Lemma 1, H has n 4 2r vertices,n — 1+ r
edges and r + 1 bipartite components. So one of the following holds:

(i) H has exactly r + 1 components, and each component of H is a tree.
(ii) H has r + 1 components which are trees, the other components of H are odd unicyclic.

In what follows we show that (ii) does not occur if n is odd and r = 1. If (ii) holds, then by
Lemma 4, Po(H) is divisible by 4 since H has a cycle of odd order as a component. Since T is
a tree of order 1, by Lemma 3, Po(H) = Po(T)Pg(K2)" = n2" is divisible by 4, a contradiction.
Therefore (i) must hold. In this case, H and T LI rK; are both bipartite, and so they are also
L-cospectral. By the previous part, T LI 7K is DLS. So we have H = T LI rKj.

Hence T LU rK5 is DQS when n is odd and r = 1. O

Remark 1. Some DLS trees are given in [25] and references therein. We can obtain some DLS
(DQS) trees with independent edges from Theorem 1.

Lemma 14 and Theorem 1 imply the following corollary.
Corollary 1. For an odd positive integer n, we have the following
(i) Let T be a starlike tree of order n and with maximum degree 4. Then T LI K is DQS.
(ii) P, U K3 is DQS.
(iii) Forn # 4, Ky ,,—1 U Ky is DQS.

(iv) Let L be the line graph of a T-shape tree T(a,b,c) except T(t,t,2t +1) (t > 1). Then
LUKy isDQS ifa+b+c—3isodd.

Theorem 2. Let G be a DQS odd unicyclic graph of order n > 7. Then G U rKj; is DQS for any
positive integerr.

Proof. Let H be any graph Q-cospectral with G LI rK,. By Lemma 1(5), 0 is not an eigenvalue of
G since it is an odd unicyclic. So by Lemma 4, we have 4 = det(Q¢) = Pg(G). Moreover,

Po(H) = Po(G U7Ky) = Po(G)Po(Ka)" = det(Qg)2" =4 -2 = 2'+2,

By Lemma 1, H has n + 2r vertices, n + r edges and r bipartite components. So one of the
following holds:

(i) H has exactly r components each of which is a tree.

(ii) H has r components which are trees, the other components of H are odd unicyclic.
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We claim that (i) does not hold, otherwise, we may assume that H = H; LI .... LI H,, where H;
is a tree with n; vertices and ny > ... > n, > 1. It follows from Lemma 3 that

ny...n, = Pq(Hy)...Pqo(H,) = Po(H) =4-2" =22,
Sony...n, =2""2 ny < 8. Since G contains a cycle, say C, by Lemma 7 we have

n1(H) = q1(G) > q1(C) = 4. (1)

Let A(H) be the maximum degree of H. If A(H) < 2, then all components of H are paths,
hence by Lemma 8, ¢q;(H) < 4, contradicting Eq. (1). So A(H) > 3. From n; < 8 and
n...n, =4-2" = 2(r+2), we may assume that Hy = Ky7, H» = ... = H, = Kj. Since
H = K7 U (r — 1)K, has n + 2r vertices, we get n = 6, a contradiction ton > 7.

If (ii) holds, then we may assume that H = U; U...U U, U H; U...U H,, where U; is odd
unicyclic, H; is a tree with n; vertices. By Lemmas 3 and 4, 4 - 2" = Po(H) = 4°ny...n,. So
c=1 Hy =... = Hy = Kj. Since H = U; UrK; and G L rK; are Q-cospectral, U; and G are
Q-cospectral. Since G is DQS, we have U; = G, H = G UrKj. O

Remark 2. Note that C4 LI 2P3 and Cg U 2K, are Q-cospectral, i.e., SpeCQ(C4 LI 2P;) =
Spec(Ce LI2Kp) = {[4]%, [3)%, [2]%, [1]%,[0]3}. It follows that the condition “odd unicyclic of
ordern > 7” is essential in Theorem 2.

Remark 3. Some DQS unicyclic graphs are given in [25] and references therein. We can obtain
some DQS graphs with independent edges from Theorem 2.

Theorem 3. Let G be a DQS graph of order n > 5. If G is non-bipartite bicyclic graph with Cy4
as its induced subgraph, then G L K is DQS for any positive integer r.

Proof. Let H be any graph Q-cospectral with G L 7K;. By Lemma 4, we have
PQ(H) = PQ(G UJ TK_’)_) = PQ(G)PQ(K;)_)r = PQ(G)2r.

By Lemma 1(5), 0 is not an eigenvalue of G since it is non-bipartite. So by Lemma 4, we have
16 = det(Gg) = Po(G) and thus Po(H) =16 - 2".

By Lemma 1, H has n + 2r vertices, n + 1 + r edges and r bipartite components. So H
has at least r — 1 components which are trees. Suppose that Hy, Hy, ..., H, are r bipartite
components of H, where Hy, ..., H, are trees. If H; contains an even cycle, then by Lemmas
4 and 5, we have Po(H) > Pg(H;) > 16, and Po(H) = 16- (2~!) = 2'3 if and only if
H = CyU(r—1)Kp. By Po(H) =16 - (2 !) =273, we have H = C4 U (r — 1)Kj. Since H has
n + 2r vertices, we get n = 2, a contradiction (G contains C4). Hence Hj, Hy, ..., H; are trees.
Since H has n + 2r vertices, n + 1 + r edges and r bipartite components, H has a non-bipartite
component Hy which is a bicyclic graph. Lemmas 4 and 5 imply that Po(H) > Po(Hp) > 16,
and Po(H) = 16 - 2" if and only if H = Hy LI rK; and Hj contains Cy as its induced subgraph.
By Po(H) = 16-2", we have H = Hy LI7Kj. Since H and G LI7K; are Q-cospectral, Hy and G are
Q-cospectral. Taking into account that G is DQS, we conclude that Hy = G and H = G U rKj.
Hence G L rK; is DQS. O

Remark 4. Some DQS bicyclic graphs are given in [25] and references therein. We can obtain
DQS graphs with independent edges from Theorem 3.
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Lemma 15. Let G be a connected graph. Then there is no subgraph of G with the Q-spectrum
identical to Spec(G) U { [2]1}. Moreover, if G is of order at least 3, then q1(G) > 3.

Proof. Suppose by the contrary that there is a subgraph of G, say G’, such that Spec(G') =
Spec(G)U {[2]1} But, in this case |[E(G')| = |E(G)| +1and |V(G')| = |V(G)| + 1. Therefore
there exists a vertex v of G’ with the degree one such that G’ — v = G. This means that
G is a proper subgraph of the connected graph G’ and so by Lemma 6, 4;(G') > 41(G), a
contradiction. If G is a connected graph of order at least 3, it has K3 or Kj » as its subgraph.
Moreover, Spec(K3) = {[4], [1]?} and Specy(K12) = {[3],[1],[0]}. Therefore by Lemma 5,
n(G) = 3. O

Theorem 4. Let G be a connected non-bipartite graph with n > 3 vertices which is DQS. Then
for any positive integer r, G LI 7K is DQS.

Proof. Let H be a graph Q-cospectral with G LI 7K. Then by Lemmas 1 and 2, H has n +
2r vertices, n + 1+ r edges and exactly r bipartite components. We perform mathematical
induction on r. Suppose that H is a graph Q-cospectral with G U K;. Then

Specq (H) = Specy(G) USpecy(Kz) = Specy (G) U {[2]1, [O]l} .

Since G is a connected non-bipartite graph, by Lemma 1, it has not 0 as its signless Laplacian
eigenvalue. Therefore, H has exactly one bipartite component. Therefore, by Lemma 15 we get
H = GUK;. Now, let the assertion holds for r; that is, if Spec(G1) = Specy(G) U Specy (rKz),
then G; = G UrK,. We show that it follows from Spec,(K) = Spec(G) U Specy((r +1)K>)
that K = G U (r 4+ 1)K,. Obviously, K has 2 vertices, one edge and one bipartite component
more than G;. So, we must have K = Gj U K;. Now, the inductive hypothesis holds the
proof. O

Lemma 11 and Theorem 4 imply the following corollary.

Corollary 2. For a k-regular graph G of order n, (GVK;) UrK; is DQS if either of the following
conditions holds:

(i) ke{l,n—-2},
(ii) k=2andn > 11,
(iii) k = n — 3 and G has no triangles.
Lemma 12 and Theorem 4 imply the following corollary.

Corollary 3. Let G be a k-regular graph of order n. Then (GVK;) UrK; is DQS for k €
{1,n —2}. Fork = n — 3, (GVK,) UK, is DQS if G has no triangles.

Lemma 13 and Theorem 4 imply the following corollary.

Corollary 4. Let G be a non-bipartite graph obtained from K,, by deleting a matching. Then
G UKy is DQS.

Remark 5. Some 3-regular DAS graphs are given in [25] and references therein. We can obtain
DQS graphs with independent edges from Corollary 4.



194 SHARAFDINI R., ABDIAN A.Z.

Lemmas 9 and 10 and Theorem 4 imply the following corollary.

Corollary 5. Let G be a k-regular connected non-bipartite graph of order n. Then G UrKj; is
DQS if either of the following holds

(i) ke{2,n—1,n—2,n—3}.
(ii) k =n —4 and G is DAS.
Lemma 14 and Theorem 4 imply the following corollary.
Corollary 6. Let G be any of the following graphs. Then G L rK; is DQS.
(i) The graphs C, (nisodd), K, (n > 4).
(ii) The graphs P, (n > 5).
(iii) The wheel graph K1V C,,.
(iv) Every lollipop graph Hy,, when p is odd and n > 8.
(v) The kite graph Ki, ,_1 forn > 4 and n # 5.
(vi) The friendship graph F,.
(vii) (C, otKy), whenn isodd andn ¢ {32,64} and t € {1,2}.
(viii) Uy ,—, ifr(> 3) isodd andn > 7.
(ix) CS(n,a) when1 < a <n—1andwa # 3.
(x) S(n,c) and its complement wheren > 2c+1and ¢ > 1.
(xi) HVK,, where H is an (n — 2)-regular graph on n vertices, and K, VK, except forn = 3.
(xii) The dumbbell graphs D, , (p or q is odd) different from Dj3;, and all non-bipartite

theta graphs O ;.
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Hexait G mpocTit HeHanpstMaeHmit Tpadd. Toai 6e3sHaxkoBa AamaaciaHoBa MaTpylst G BU3Hada-
erbest sik D + Ag, Ae D i A MO3HAUaOTh MaTPUITIO CTEIEHiB i MaTpMINO CyMiXHOCTI rpady G
BiamoBiaHO. I'pad G HasMBaIOTH BM3HAUEHNM CBOIM 6e33HAKOBMM AallAaciaHOBUM CIEKTPOM (CKO-
pouenHst DQS), sIKIII0 6yAb-sIKMit rpad, 0 Mae TaKMit caMuii 6e33HaKOBMIA AAITAACiaHOBUIA CIIEKTP
sk G, € isomopdpruM 20 G. Y poboTi noxasano, mo G U rKp BU3HaUeHWMIT cBOIM He33HAKOBUM Aa-
IIAACiaHOBMM CIIEKTPOM 3a IeBHMX YMOB, Ae 7 i K I03HauaoTh HaTypaAbHe UMCAO i IOBHMI rpad
Ha ABOX BepIIMHAX BiAIIOBiAHO. 3acTOCOBYIOUM Ii pe3yAbTaTH MM oTpuMain aesiki DQS rpadm 3
He3aAeXHMMM BepIIMHAMU.

Koouosi cioea i ppasu: creKTparbHa XapaKTepu3allisl, 6e33HaKOBMIL AAILAACiaHOBMIA CIIEKTP, KO-
crleKTpaAbHi rpadoy, 06’eaAHaHHS rpadis.
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SOME ANALYTIC PROPERTIES OF THE WEYL FUNCTION OF A CLOSED LINEAR
RELATION

Let L and Ly, where L is an expansion of Ly, be closed linear relations (multivalued operators)
in a Hilbert space H. In terms of abstract boundary operators (i.e. in the form which in the case
of differential operators leads immediately to boundary conditions) some analytic properties of the
Weyl function M(A) corresponding to a certain boundary pair of the couple (L, Lg) are studied.

In particular, applying Hilbert resolvent identity for relations, the criterion of invertibility in
the algebra of bounded linear operators in H for transformation M(A) — M(Ap) in certain small
punctured neighbourhood of Ay is established. It is proved that in this case A is a first-order pole for
the operator-function (M(A) — M(Ag))~*. The corresponding residue and Laurent series expansion
are found.

Under some additional assumptions, the behaviour of so called vy-field Z, (being an operator-
function closely connected to M(A)) as A — —oo is investigated.

Key words and phrases: Hilbert space, relation, operator, extension, pole.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: storogQukr.net

INTRODUCTION

The theory of linear relations (multivalued operators) in Hilbert space was initiated by R.
Arens [1]. Various aspects of the extension theory of linear relations (in particular, nondensely
defined operators; first of all, Hermitian ones) were studied by a number of authors (see, e.g.
[3,15,16], [5]-[8], [9], [10], [14]).

Let us explain that under (closed) linear relation in H, where H is a fixed complex Hilbert
space equipped with inner product (-|-), we understand a (closed) linear manifold in
Yy @ H and that in the theory of linear relations every linear operator is identified with
its graph. Each such relation T has the adjoint T* which is defined as follows:

T = H*SJT (: J(H2& T))

(here and below @ and © are the symbols of orthogonal sum and orthogonal complement,

respectively; for all hy, hy € H [ (hy,hy) o (—ihy,ihy)).
In this paper the role of initial object is played by two couples (L, Ly) and (M, M) of closed
linear relations in H such that

LyCL M=L; My=L"

YAK 513.88
2010 Mathematics Subject Classification: 47 A06, 47 A56, 47B25.
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Let us note that in [13,15-17] the term “dual pair” was using instead of ”"couple” in the
present paper. The authors of [2] were using the term adjoint pair.

The notion of Weyl function had been introduced at first in [4] under the assumption that
Ly is a nonnegative densely defined operator and M = L. Later on it was extended onto more
wide varieties of operators and relations in some of papers, mentioned above (e.g. [5,7,15,16]).
It turned out that this notion is very important in the extension theory, since certain classes of
extensions of a given operator or relation may be described by using this notion.

In this article (which can be regarded as a continuation of investigations originated in [20,
21]) we study some analytic properties of the Weyl function of (L, Ly) corresponding to the
certain its boundary pair (see Definitions 1, 2).

1 NOTATIONS AND PRELIMINARY RESULTS

Through this paper we use the following notations:

D(T), R(T), kerT are, respectively, the domain, range, and kernel of a (linear) relation (in
partial, operator) T:

D(T)={y€H|Qy €H): (yy) €T}, R(T)={y €H|(FyeH): (yy) €T};

kerT={y € H|(y,0) € T};

ifAeCthenT—A={(y,y —Ay) | (y,y) € T}, sequently

Ker(T— A) = {y € H| (5,0) € T— A} (= {y € H| (y, Ay) € T});

T ={(,y) e H*|(v,y') € T};

p(T) = {A € C|ker(T —A) = {0}, R(T —A) = H} (the resolvent set of T);

1x is the identity in X;

+, + are, respectively, the symbols of sum and direct sum in a linear space.

If X, Y are Hilbert spaces then (-|-)x is the symbol of scalar product in X, B(X,Y) is the set

d
of linear bounded operators A : X — Y such that D(A) = X; B(X) ) B(X,X).
If A; : X — Y; (i = 1,2) are linear operators then the notation A = A; & A, means that

. Alx
Ax = < Ayx )for every x € X.

Definition 1 ( [18]). Let G be an (auxiliary) Hilbert space and T € B(L,G). The pair (G,T) is
called a boundary pair for (L, Ly) if R(T) = G, kerI' = Ly.

Theorem 1 ( [18,19]). There exist Hilbert spaces G1, G, and the operators
I, e B(L, Gl), I, e B(L, Gz), fl € B(M, Gz), fz € B(M, Gl)

such that

i) (G1 @ Gy, I'1 ®T) is a boundary pair for (L, Ly);

i) (G2 ® Gy, I'1 @ T2) is a boundary pair for (M, My);

iii) forall § = (y,y') € L, forall 2 = (z,7/) € M (V'|z) — (y|z) = T19T22)g, —
(T29[T12)c,-

We suppose below that the resolvent set p (Ly) of the relation L, Y rer I'; is not empty and
A € p(Lp). Then A € p (M), where M, “ xer [, (= L3) and
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def

d
L& tef

(Lo—A) Y eBH), M;= (My—2A) "' (=L%) € B(H).

N Lyy A M5z
Put for all H Ly= for all H M5z = A
ut forall y € AY <y+)\L/\y>,ora z € H Myz <Z+)\MXZ)'
forally = (y,y/) € H* Lyg = Ly + (v + ALyY'),
forall2 = (z,2') € H? My2 = Mz + (2 + AMzZ))
(it is clear that ix = MX' ]\7[% =1,

A - - 5 ~ A 4
Zy= (M) (= L), Zp= (M) (= ¥5T), 20— (53 ).
Note that in some articles Z, is said to be ay-field.

Lemma1 ([19]). ) R(Ly) = L, R(Mz) = My;
.. Z) € B(Gy,H) and R(Z)) = ker(L —A),
W) 7 € B(Gy,H) and R(Z;) = ker(M — 1);
111)R(Z;\) C L and ThZy = 1g,

Proposition1([1,3,6]). Let S be closed linear nonnegative, in symbols S > 0 (that is (z|y) > 0
forall (y,z) € S), selfadjoint relation in H and A < 0. Then

i)

—_

reps), |[s-n7 < B (1)

ii) Put S(0) ={y € H: (0,y) € S}, Ss =S ({0} &5(0)). S; is the graph of selfadjoint
operator Sop : S(0)* S(0)*(= D(S)) (which is said to be an operator part of S) with

D<sop>=D<s>andR(< ~A)gp) = SO,

It is clear that (1) implies

forall fe H lim (S—A)"'f=0. )

A——o00

Moreover, if S is an operator, then

forallf € H lim A=A FHf] =0 3)

Indeed, for each g € D(S) wehave A (S—A) 'g+g=(S—A)"" Sg/\ — 0 (see (2)). Further,
——

in view of (1) forall A € (—o0,0) HA (S—A) "'+ 1HH <2

Since D(S) = H, two latter relations guarantee that (3) is true. It follows from the well
known criterion of the strong convergence for the operator sequences (see [12, p. 59]).

2 AUXILIARY STATEMENTS

Remark 1. Applying Hilbert resolvent identity for relations (see [6]) it is easy to prove that

forall A,y € p(Ly) Ly—Ly=(A—p)LyLu(= (A —p) L,Ly). (4)
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Indeed,

Ly =Ly = (Ly = Ly, ALy = ply) = (L = Ly, (A= p) La+p (Ly — L))

(A= p) LaLy, (A= p) Ly +p (A = ) LaLy)
= (A—u)Lr (Ly, 1g + uLly) = (A —p) LiLp.

Similar arguments show that
forall A, p € p(Ly) Ly—Ly=(A—p)LiLu(= (A —p) LuLy).
Lemma 2. Let A, it € p(Lp). Then

Zy=Zy = A =p) LaZu(= (A = 1) LyZy),
2y = Zp= (A= p) Zgla(= (A =) Z3Ly),
Zy— Zy =A—-n IAJAZV(: (A= p) LuZy).

Proof. Taking into account (4) we obtain

The equality (5) is proved. The proof of (6) is analogous. Furthermore,

AZy —uZy =A(Zy—Zy) + (A — ) Zy,

=AA = LaZy+ (A —p) Zy = (A—p) Qu +ALy) Zy.

The latter identity together (5) implies (7).

Corollary 1. For arbitrary A € p(Ly), n € IN we have

Proof. First of all, note that

LY =meyt, LY =milfly, LYY =il L),

(5)
(6)
(7)

(8)
)
(10)

(11)

In the case n = 1 these equalities follow immediately from the Hilbert resolvent identity. In the
general case induction should be applied. The equalities (11) imply (8), (9). In order to prove

(10) note that (AZ A)(") = nzg‘n_l) + AZ/(\”) (it can be shown by induction). The latter identity

together with (9) imply (11).

Lemma 3. Suppose that A, u € p(Ly). Then

- -1 .
(Z52\) € B(G1,Go) & R(Lo— i) +ker (L—A) = H.

0

(12)
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Proof. 1t is sufficient to verify the next implications:

i) R(Lo—pu)Nker (L—A) = {0} = ker <Z§ZA> = {0},
i) R(Lo— ) + ker (L—A) = H= R (Z;zA) =Gy,
iii) ker (Z;zA) = {0} = R(Lo— p) Nker (L — A) = {0},
iv) R (Z;zA) = Gy = R(Lo— ) + ker (L— A) = H.

Let us consider each of them.

i) Assume that for some a € G, the equality Z%Z,\a = I'1L,Zya = 0 holds. Then
ﬁHZAa € kerI';. But iHZAa € L, = kerl,, hence iHZ)\a € Lp. In other words,

(e 11210 )  tr Comeants (01 ) € b= mpctn 230 € it

—u). But (see Lemma 1) Za € ker (L — A), therefore Zya =0, Zya =0. Thusa = I2Zya = 0.

ii) For arbitrary h € G there exists § = < ]]j , ) € L, = kerI'; satisfying the equality
I'1j = h. We have: ( 5, oy ) € Ly — p, in particular, y = L, (y' — py) . Further, there exist

u e R(Lop—p), a € Gysuchthaty' — uy = u+ Zya. It means that for some fjy = ( Yo ) c H2
0
the equalities u = y, — uyo, Yo = Ly (o — #yo) are fulfilled. Whence using these equalities we

obtain

LuZya=L,(y —py—u) =Ly (Y — uy) — (yo — uvo)) = Ly (v — my) — Ly (vo — uyo)
( w(y = ny) )_( (¥o — Myo) )
v —uy +puLy(y — py) Yo — #yo + uLu(yo — wyo)
— _( Y >:<y>_<y0>:A_A
(y—wﬂty) <y6—wo+uyo y Yo v
consequently

VAVATES T1LuZya=T1(9—90) =T19 =h
iii) Assume thaty € R (Lo — u) Nker (L — A). Theny = Z,a for some a € G, and

yeR(Lo—p). (13)

The inclusion (13) implies y € R (L, — p) . It is easy to see that
(Lyyy) € L2 = (14)
Taking into account (13), (14) and the equality ker (L, — A) = {0}, we obtain (L,y,y) € Lo—
—u. The latter inclusion yields ﬂyy = < ;;fﬂlwy ) € Loy, therefore Fliyy = FliyZAa = 0.

Now it is clear thata =0, y = 0.
iv) For any h € H we have L,h € L, (see Lemma 1). Put I'1L,h = g. There exists

u € ker (L—A) = R(Z,) such that I'1L,u = g, consequently Ty1L, (h —u) = 0. Moreover,
Ly(h—u) € Ly, ie. ( iffhu_u) ) € Lo—pu. Thush = u+ (h—u) € ker(L—A) +

+R (Lo—n). ]
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5 -1
Remark 2. Assume that Ay € p (L), (Z%OZM) € B(G1,Gy), and

O<AA0<min{ ! , —— L - } (15)
ol 123l ] 25,22

5 -1
Then <Z%ZAO> € B (Gy, Gy) (here and below || T|| is the norm of operator T).

Indeed, let |A — Ag| < . Applying the theorem on perturbation of invertible in

_1
2Ly |
BB (H) operator (see [11, pp. 228-229 ]) we see that (15 + (A — Ag) LAO)_l € B(H) and

H (1 + (A= Ag) Ly) ' — 1HH < 20A = Aol || LI (16)

Further, taking into account (6) in which y is replaced by Ay we conclude that

s i 5 % -1
252y~ Z5-Zog = Zi | (T + (A = A0) L) ™ = 11| Za,
Whence using above-mentioned theorem and (16) we obtain the following: (12) implies
. -1
<Z%Z)\O) eB (Gl, Gz) .
d -
Proposition 2. Suppose that My = Lo > 0, M =L, G = G ef’;’-[ =10, =1,
(in other words, (H,T1,T2) is a boundary triple (boundary value space) of L [5,9, 10, 15]). Let

d -
) f kerI'; be a (selfadjoint) nonnegative extension of Ly, and L), L), Z, be as above.
Under these assumptions

s— lim Z; =T, (00 Q), w— lim Z, = QmI}, (17)
A——00 A——00

where s — lim and w — lim are respectively the symbols of strong and weak limits for operator-
functions, while Q and 7, are the orthoprojections H — L,(0) and H*> — {0} ® H.

Proof. Let f € H, P be the orthoprojection H — R <(L2 - A)Op> (= L2(0)1), and Q be the
orthoprojection H — (L, — A) (0) (= L2(0)) . Then f = Pf + Qf. We obtain

Lif = LiPf + LQf = ((La=A),,)  Pf.
But (L, — A) op = Lop — A (indeed,

forall f € D ((L2 - A)Op) = D (Lo — A) (= D(L2)) (Laop — A) f — (Lo = A),, f € L2(0)*;

on the other hand, the inclusions (f, (Lep —A) f), <f (Lp —A)Opf) € Ly — A imply
(Lo = M)gp f = (Laop = A) f € (L2 = A) (0) = L2(0)), therefore

AL f+ f = A (Loop — M) Pf+Pf+Qf.
Taking into account (3) with S = L, we see that /\lim (AL f + f) = Qf, whence us-
——

ing (2) with S = L, we obtain /\glzloo Lif = < gf > , therefore Alil?oo Zif = AEI?OO Tl f =
=T (0@ Q) f. The first of the equalities (17) has been proved. The second equality is a imme-
diate consequence from the first one. O
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3 MAIN RESULT
d o
Definition 2 ([16]). An operator-function M(A) “r 1Z)y (A € p(Lp)) is called the Weyl func-
tion of the couple (L, Ly) corresponding to its boundary pair (G1 ® Gy, I'1 ©17).
Lemma 4. Forany A, u € p(Ly), the equality

M) = M(p) = (A=) Z3Z0 (= (A — ) 737,
is true.

Proof. In view of (10) we obtain

M(A) = M(p) =T1 (Zy = 2,) = (A= ) TalaZy = (A= p) 252y (= (A=) Z52,)

O
Consider some analytic properties of the operator-function M(A).
Lemma 5. M(A) is analytic B (G1, Gy)-valued function on p(L;). Moreover, for any n € IN
MW(A) =n1ZiL1Z,, (18)

in particular M'(A) = Z}Z A

Proof. Since L) is a B (H)-valued analytic function on p(L;), we conclude that
5 Ly 1g+ALy -
Zn = < AL,  Aly + AL, i

is an analytic B (G,, H?)-valued function. But by virtue of Lemma 1 R(Z,) C L, sequently Z,
is a B (G, L)-valued analytic function. Moreover (see (10)) Zg\n) = n!L ALX*Z 1, therefore
MMy =132\ = Ty 1,117,
O

Theorem 2. Suppose that Ag € p(Lz), R (Lo — Ap) + ker r (L —A) = H, and (15) holds. Then

i) (z;oon) €B(G,Gy), (M(A) —M(A)) ! € B(G1,Ga);

ii) Ag is a first-order pole for the function (M(A) — M(Ag)) ™ Y and
res 11, (M) ~ M) 7 = (23,2,,)

Proof. i) This statement is a direct consequence of Lemma 3, Remark 2 and Lemma 4.
ii) Put
(A —Ag)7" ( (A ) M(Ag)), A # Ag
) = { M'(Ao) = Zi-Zy,, A= Ao '

It is clear that Ahl‘I/\l I[I(A) = M'(Ag) = Zj‘\—OZ A, (with respect to uniform operator conver-
—A0
gence). Hence, lim [(A —Ag)(M(A) — M(Ag)~1] = lim IT(A)~! = (Z* Z,,)~!. The theorem
A—Ag A—=Ag Ao
is proved. O
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Remark 3. Theorem 2 yields that in some neighbourhood of the point Ay € p(Ly) such that
R (Lo — Ap) + ker (L — A) = H, the following expansion takes place:

(M(A) — M(Ag)) = A_LAO (Z;_OZAO) g HX::O(A — Ag)"R™, (19)

where R e B(Gy,Gy), n =0,1,2,... On the other hand, in view of (18) we obtain

¢

M(A) = M(Ag) = Y (A= Ap)"- Z;—OLKO*leO.

n=1

Multiplying both sides of two latter equalities we obtain the recurrent relations for the coeffi-
cients R in (19):

n
Y Z5 LR 7y, RV =0 (neN), RD= (Z5-Z0g) "

In particular, RO = _R(=1). Z;—OLAOZAO CRGD),
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Hexait L ta Ly, ae Ly C L, — 3aMKHeHi AiHilHI BiAHOIIEHHS (6araTo3HaUHi OonepaTopy) y KOM-
IIAeKCHOMY TiabbepToBOMY IpocTopi H. Y TepMmiHax abcTpakTHNMX TPaHIMIHNIX OIlepaTopiB (TO6TO y
BUTASIAL SIKUM Y BUTIAAKY AicpepeHIIiaAbHIX OllepaTOpiB IPMBOAUTD 6e3MocepeAHbO A0 TPAHIIHIIX
YMOB) AOCAIAXKYIOTBCSI AesIKi aHaAITHUHI BAACTMBOCTI (pyHKIiT Bettast M(A), sika BiaioBirae Aesikiit
rpannyHiit napi (L, Lo).

30KpeMa, 3aCTOCOBYIOUM PE30ABBEHTHY TOTOXHICTH I'iabbepTa AAS BiAHOIIIEHB, BCTAHOBAECHO
KpUTepilt 060POTHOCTI Y aArebpi o6MeXeHNX AiHIHNMX omepaTopis, Allounx y H, aast Biaobpaxke-
HHsE M(A) — M(Ag) y AesIKOMY AOCTaTHBO MaAOMY ITPOKOAEHOMY OKOAl TOUkm Ag. AoBeAeHO, 1110
B LIBOMY BUITAAKY A( € OAIOCOM MEpIIIOro TOPSIAKY AASI orepaTop-dyrxii (M(A) — M(Ag)) ',
3HalA€HO BiATIOBiAHI AMIIIOK Ta PO3BMHEHHS Y psia AopaHa.

ITpu AesTKMX AOAATKOBMX IIPUITYIIEHHSIX AOCAIAXKY€EThCSI IIOBEAIHKA Py A — —00 TaK 3BaHOTO
Y-LIOASL Z), SIKe SIBASIE COBOIO OIepaTop-pyHKIIIO, TiCHO OB’ s13aHO0 3 M(A).

Kntouosi cnosa i ¢ppasu: riabbepTiB MPOCTip, BiAHOLLIEHHSI, OIIEPATOP, PO3IIMPEHHST, MOAOC.
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VASYLYSHYN T.V.

SOME PROPERTIES OF SHIFT OPERATORS ON ALGEBRAS GENERATED BY
*-POLYNOMIALS

A x-polynomial is a function on a complex Banach space X, which is a sum of so-called (p, q)-
polynomials. In turn, for non-negative integers p and ¢, a (p, q)-polynomial is a function on X,
which is the restriction to the diagonal of some mapping, defined on the Cartesian power XP 11,
which is linear with respect to every of its first p arguments and antilinear with respect to every
of its other g arguments. The set of all continuous *-polynomials on X form an algebra, which
contains the algebra of all continuous polynomials on X as a proper subalgebra. So, completions
of this algebra with respect to some natural norms are wider classes of functions than algebras of
holomorphic functions. On the other hand, due to the similarity of structures of *-polynomials and
polynomials, for the investigation of such completions one can use the technique, developed for the
investigation of holomorphic functions on Banach spaces.

We investigate the Fréchet algebra of functions on a complex Banach space, which is the comple-
tion of the algebra of all continuous *-polynomials with respect to the countable system of norms,
equivalent to norms of the uniform convergence on closed balls of the space. We establish some
properties of shift operators (which act as the addition of some fixed element of the underlying
space to the argument of a function) on this algebra. In particular, we show that shift operators are
well-defined continuous linear operators. Also we prove some estimates for norms of values of shift
operators. Using these results, we investigate one special class of functions from the algebra, which
is important in the description of the spectrum (the set of all maximal ideals) of the algebra.

Key words and phrases: (p,q)-polynomial, *-polynomial, shift operator.
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INTRODUCTION

x-Polynomials (see definition below) are natural generalizations of usual polynomials on
complex Banach spaces. Such objects were firstly studied in [4]. It is known that comple-
tions of the algebra of all continuous polynomials on some complex Banach space with respect
to topologies of uniform convergence on some bounded subsets of the space are algebras of
holomorphic functions. On the other hand, the analogical completions of the algebra of all
continuous *-polynomials contain wider classes of continuous functions. Except of holomor-
phic functions, they can contain functions, which are complex-conjugate to holomorphic. Also,
as it is shown in [3], such algebras can contain functions, which cannot be represented as lin-
ear combination of products of holomorphic functions and complex-conjugate to holomorphic
functions. Thus, such algebras can contain the wide enough class of continuous functions on a
complex Banach space. The algebraic structure gives the opportunity to consider the elements
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of the algebra as continuous functions on the spectrum (the set of maximal ideals) of the al-
gebra. In the description of spectra of algebras of functions on Banach spaces the so-called
convolution operation on the spectrum plays an important role. In turn, the convolution op-
eration on the spectrum is defined with aid of the so-called shift operators, defined on the
algebra. Shift operators for algebras of holomorphic functions on Banach spaces and their
applications for the spectra were investigated in [1], [2], [7], [8].

In this work we establish some properties of shift operators on the Fréchet algebra of func-
tions on a complex Banach space, which is the completion of the algebra of all continuous
x-polynomials with respect to the countable set of norms, which are equivalent to norms of
the uniform convergence on closed balls with rational radii, centered at 0. We show that shift
operators are well-defined continuous linear operators. Also we investigate one special class of
functions from the algebra, constructed by using of the composition of continuous linear func-
tionals with shift operators. Such classes of functions play an important role in the description
of spectra of algebras of functions on Banach spaces.

Let IN be the set of all positive integers and Q be the set of all positive rationals. Let
X be a complex Banach space. A mapping A : XP™1 — C, where p,q € N U {0} are such
that p # 0 or g # 0, is called a (p, g)-linear mapping, if A is linear with respect to every of
first p arguments and it is antilinear with respect to every of last 4 arguments. A (p, q)-linear
mapping, which is invariant with respect to permutations of its first p arguments and last g
arguments separately, is called symmetric. A mapping P : X — Cis called a (p, q)-polynomial
if there exists a symmetric (p, q)-linear mapping Ap : XP*7 — C such that P is the restriction
to the diagonal of Ap, i.e,,

P(x) = .
(x) = Ap(x,.. . %)
p+q
for every x € X. The mapping Ap is called the symmetric (p, q)-linear mapping, associated
with P. (p, g)-polynomials and (p, q)-linear mappings were studied in [5] and [6].

Note that for (p, q)-polynomials the following analog of the Binomial formula holds:

l

y) ]ZOkZO] (q Ay ¥

where
Ap(xj,y”_j, xk,yq_k) =Ap(X, ..., X, Y, Y X XY, Y)
j p=i k -k
for every x,y € X. Let us denote by P (P7X) the space of all continuous (p, g)-polynomials with
norm
IP] = sup |P(x)].

[[xf <1

Also, for convenience, let P(X) = C.
A mapping P : X — C is called a *-polynomial if it can be represented in the form

M N
P = Z: Z:I?w

p=04=0

where M,N € N U {0} and P,; € P("7X). Denote P.(X) the algebra of all continuous *-
polynomials on the space X.
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1 THE MAIN RESULT

Let
{Il-llr: 7€ (0,400)} ()

be the set of norms on P, (X) such that
1. |PQ]lr < ||P|I||Q|lr for every P,Q € P«(X) and r € (0, +00).

2. There exist functions (0, +o0) 3 t > ¢; € (0, +00) and (0, +c0) > t — C; € (0, +00) such
that inf,c(, ¢+ > 0 and SUP; ¢ (4] Ct < +oo forevery b > a > 0, and

¢ sup |P(x)] < |IP], < C sup |P(x)

[lxll<r [lxll<r
forevery r € (0,400) and P € P.(X).

Let
{1y reQs} (3)

be the subset of the set of norms (2). Note that the set (3) is countable. Let A(X) be the
completion of P, (X) with respect to the metric, generated by the set of norms (3). It can be
checked that A (X) is a Fréchet algebra of functions on X. By the continuity of norms from (3),

cr sup |f(x)| < [Iflly <G sup [f(x)] (4)

1l <r [lxl|<r
forevery r € Q4 and f € A(X).
Theorem 1. (i). For every x € X the operator Ty : A(X) — A(X), defined by

(Tf)(y) = f(x+y),

where f € A(X) andy € X, is a well-defined continuous linear operator such that

[T fllr < Crc;f__&HxHHer—i-HxH/

forevery f € A(X) andr € Q.
(ii). For every f € A(X) and for every continuous linear functional ¢ : A(X) — C, the
function h(Prf : X = C, defined by

hg,f(x) = ¢(Txf),
belongs to A(X), and
|hgo,f(x)| < KCSCS__:HxHHf”s-i-HxH/
for every x € X and for every s € Q4 such that ¢ is continuous with respect to || - ||, where
K =sup <1 lo(f)l.
Proof. (i). Let x € X. For every f € A(X), since (Txf)(y) = f(x +y) and f is well-defined at
x +y, it follows that T\ f is well-defined at y. Also note that for every r € Q4

sup [f(x+y)| < sup |[f(z)] < C;_:HxHHf|’r+HXH’

Iyll<r ]| <r+[x|
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ie.,

sup |(Tof)(y)| < Cr+|\x|\||f|’7+\|x\| 5)
lyll<r

Let P € P.(X). Let us show that T,P € P.(X). Let P = EQ/I:() 2{7\’:0 Py;, where Py, €
P(P1X). By (1),

Iq!
k! (q — k)!

e
Ap,, (X, yP x5, 1),

SL Yy

i0a=0=0i=0 /(P

where Ap, is the symmetric (p, g)-linear mapping, associated with the (p, q)-polynomial Pp,
for every p € {0,...,M} and q € {0,...,N}. Note that for fixed x € X the function
Appq(xf ,yP~7,xk,97%) is a continuous (p — j,q — k)-polynomial with respect to y. Therefore,
TyP is a continuous *-polynomial.

Let f € A(X). Let us show that Ty f € A(X). Since P, (X) is dense in A(X), it follows that
there exists the sequence {f,}:’ ; C P«(X), which converges to f with respect to every norm
from (3). Consider the sequence {Txf,}:" ;. Since f, € P«(X), it follows that Ty f, € Py (X).
Thus, {Txfu}; 1 C P«(X) C A(X). Let us show that the sequence {Txf,}5_; is fundamental
in A(X). Letr € Q.. Form,n € N, by (4),

| Txfm — Tafullr < Cr HSlHlp (T fn) (y) — (T fu) ().
yll=r
By (5),
sup |(Txfm)(y) — (Txfa) (y)| < Cr+\|x\|”fm fﬂ”r+\|x\|

lyll<r
Thus,
HTxfm - Txfn”r < CrC;JrleHHfm - anr+|\x|\~
Since the sequence {f,}?> ; is fundamental, it follows that the sequence {Txf,}$ ; is funda-
mental. Since the algebra A(X) is complete, it follows that there exists ¢ € A(X) such that
the sequence {Tf,};"; converges to g. Let y € X. Let us show that (Tyf)(y) = g(v). Let

p € Q4 be such that p > ||y||. Since the sequence {Txf,}:’ ; converges to g, it follows that
{IITxfn — 8llp }or_q converges to 0. By (4),

sup |(Txfu)(z) — g(2)| < C;1||Tan — 8llp-

llzll<p
Therefore,
(T fu)(y) — )| < C51||Tan — 8llp-
Consequently, the sequence {(Tyf)(y)}>_; converges to ¢(y). On the other hand, by (5),
sup [(Tef)(2) = (Tef) (2)] < 58y lF = Fallos -

llzll<p

Therefore,
(TeHW) — (Tef) D] < &y = Follps -

Since || f — fullp4|x — 0asn — oo, it follows that the sequence {(Txfx)(y)};_; converges to
(Txf)(y). Therefore, (Txf)(y) = g(y). Thus, Ty f = g and, consequently, Ty f € A(X).
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By (4) and (5),
[T fllr < Cr sup [(Txf)(y)] < CrC,_JrleH||er+\|x\| (6)

lyll<r

for every r € Q.

(ii). Let f € A(X) and ¢ € A(X)'. Note that the function h, ¢(x) = ¢(Tyf) is well-defined
at every point x € X, because Ty f belongs to .A(X) and ¢ is well-defined on A(X).

Since ¢ is a continuous linear functional on A(X), there exists s € Q such that ¢ is con-
tinuous with respect to the norm || - ||s. Therefore, for every f € A(X),

()l < K[| flls, )
where K = sup ¢ 4 l¢(f)|. By (7) and (6),

lp(Tf)| < K[| Tuflls < KCSCS_+1HxHHf||s+HxH/

i.e.,
’hq),f(xﬂ < KCSCS_+1‘|X‘|”st+|\x|\~ (8)

LetP = 22/120 Z,Z,\]:o Py be a continuous *-polynomial. Let us show that a function 1, p(x) =
@(TyP) is a continuous *-polynomial. By (1), taking into account the linearity of ¢, we have

_ p'q! i pi ok gk
h‘P/P(x> o Z ZZZ il _]')!k!(q_k)!¢(y'_>Aqu(x]/yp J,x ryq ))
Note that the function

Wpq,ik(X) = @y =+ Ap,, (P, 25,y775))

is the restriction to the diagonal of (j, k)-linear symmetric mapping

B(x1, -+, X, Xj11,- -, Xjak) = @y = Appq(xl,...,x]-,yp_j, x]-+1,...,xj+k,y‘7_k)),

therefore, w), , ;  is a continuous (j, k)-polynomial. Hence, h, p is a continuous *-polynomial.

Let us show that iy, ¢ € A(X) for every f € A(X). Since f € A(X) and P.(X) is dense in
A(X), there exists the sequence {f,,}° ; C P.(X), which converges to f. Since f, € P«(X), it
follows that h,, s, € Pi(X). Therefore, the sequence {h, f, };; is contained in P.(X). Let us
show that this sequence is fundamental in A(X). Letr € Q. For m,n € IN, by (8),

|hgo,fm(x) - h(P/fn(x)| = |h(p,fm—fn(x)| < KCSC;:HJCH”fm - fn”s-i-HxH'

Therefore,

”h(p,fm - h(p,anV < C; sup ‘h(p,fm(x> - h(P,fn(x)’ < KG,Cs sup C;Lluxu”fm _fn”s+\|x\|-

x| <r llxll<r

Note that

sup Cs_JrleH”fm - fn”s-i-HxH < < sup Cs_+1\|x\|> < sup ||fm — ans-i-HxH)

[l x| <r x| <r [l x| <r



SOME PROPERTIES OF SHIFT OPERATORS ON ALGEBRAS GENERATED BY *-POLYNOMIALS 211

and

sup C;:qu = < inf cs+|x|>1 = ( inf }Ct> 71,

[l x||<r ||x|| <r tels,s+r

which is finite, because inf,c[; o1, ¢+ > 0. By (4),

sup |[fm = fallsyx < sup Coppxy  sup  |fm(y) — fu(y)| <

lxl<r lxl<r [yl <s+Ilxl
< sup Coyjy| sup fn(y) — fa(y)| = < sup Ct)”fm — falls+r-
x| <r lyll<s+r te(s,s+7]
Thus,
7 7 ||<1<cc< inf c>_1< c)||f fll
— in su — :
I Pl Phllr = T tels,s+r] : tE[s,sl::Lr} t ! e
Therefore, since the sequence { f, }7_; is fundamental, it follows that the sequence {%,, 7, } >, is

fundamental. Since A(X) is complete, there exists v € A(X) such that the sequence {h, r, } 5
converges to v. Let us show that i, r = v. Let x € X. Let p € Q4 be such that p > ||x||. By (4),

sup |hy, 5, (z) = 0(2)] < c;thg,5, = llp-

Therefore,

gz, (x) = 0(x)| < ¢ 1Bz, — 0llp-
Since ||hy,f, — vllp — 0asn — oo, it follows that the sequence {h, r, (x)};_; converges to
v(x). On the other hand, by the continuity of ¢ and Ty, since f,, — f as n — oo, we have
@(Tx(fn)) = @(Tx(f)) asn — oo,ie., hyr, (x) — hy r(x) as n — oo. Therefore, hy, ¢(x) = v(x).
Thus, h, ¢ = v and, consequently, h,, ¢ € A(X). O
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*-IToAiHOM — Ile pyHKIIisSI Ha KOMIIAeKCHOMY 6aHaxoBOMy IpocTopi X, sIKa € CyMOIO TaK 3BaHMX
(p, q)-moAIHOMIB. Y CBOIO Uepry, AASI HEBiA'€MHMX umceA p i g, (p, q)-moAiHOM — Iie pyHKIIsI Ha
mpocTopi X, sIKa € 3By>KeHHSIM Ha AlarOHaAb AeSIKOTO BiAOOGpaskeHHsI, BU3HAUeHOrO Ha AeKapTOBOMY
crenteri XP 19, sike € AiHIHMM BIAHOCHO KOXKHOTO i3 CBOIX HEPLIMX p apryMeHTIiB i aHTUAIHIHIM
BiIAHOCHO KOXXHOTO i3 pellTH § CBOiX apryMeHTiB. MHOXI1Ha BCiX HellepepBHMX *-TIOAIHOMIB Ha IIpo-
cropi X yTBOpIOE aATebpy, sSiKa MiCTUTh aATebpy BCix HellepepBHMX MOAIHOMIB Ha mpocTopi X sIK
BAACHY miaaATe6py. Takmm umHOM, TOTOBHEHHS 11i€l aATe6py BIAHOCHO AeSIKVIX IIPMPOAHIX HOPM €
IIMPIIMI KAacaMyl PYHKIIIN, HiX aare6py aHaAiTHIHMX pYHKIINA. 3 iHIITOro 60Ky, 3aBASIKM TTOAL-
6HOCTi Oy AOBU *-TIOAIHOMIB 1 TIOAIHOMIB, AAST AOCALAXKEHHSI TaKMX ITOITOBHEHD MOXHA BUKOPCTOBY-
BaTM TEXHIKY, PO3POOAEHY AAST AOCAIAXKEHHS aHAAITHUHMX (PYHKIIN Ha 6aHaXOBMX ITPOCTOPAaX.

Y poboTi A0cAiAXYeThes aarebpa Dperrte pyHKIIIN Ha KOMIIAEKCHOMY 6aHaXOBOMY ITPOCTOPI,
sIKa € TIOTIOBHEHHSIM aATebpy BCiX HellepepBHMX *-TIOAIHOMIB BiAHOCHO 3AiUeHHOI CrCTeMM HOPM,
eKBiBaAeHTHMX A0 HOPM piBHOMIipPHOI 361KHOCTi Ha 3aMKHEHMX KYASIX IPOCTOpPy. BcTaHOBAEHO Ae-
SIKi BAACTMBOCTi oTlepaTopa 3CyBY (KM Ai€ SIK AOAABAHHS AESIKOTO (pikCOBAaHOTO eAeMeHTa IIpo-
CTOPY AO apryMeHTy (bYHKIIii) Ha IIilf aArebpi. 3oKpema, IIOKa3aHo, IO OIIEPaTOPH 3CYBY € AOOpe
BU3HAUYEHVMI HellepPepBHMMM AiHIVHIMY orlepaTopamit. TakoX AOBEAEGHO AesKi OLIHKM AASI HOpM
3Ha4eHb OIepaTopiB 3CyBy. BuKopucToByroun 1i pe3syAbTaTH, AOCAIAXEHO OAVH CHeliaAbHMI KAAC
JYHKIIIN i3 aATeOpY, KWL € BaXKAUBUM AASI OINCY CIIEKTpPa (MHOXKIMHM BCiX MAKCYMaABHMX iAeaAiB)
aarebpm.

Kutouosi cnosa i ppasu: (p, q)-TIOAIHOM, *-TIOAIHOM, OIlepaTop 3CyBY.



